|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""Encoder self-attention layer definition."""
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.t2s.modules.layer_norm import LayerNorm
|
|
|
|
|
|
|
|
|
|
|
|
class EncoderLayer(nn.Layer):
|
|
|
|
"""Encoder layer module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
size (int): Input dimension.
|
|
|
|
self_attn (nn.Layer): Self-attention module instance.
|
|
|
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
|
|
|
|
can be used as the argument.
|
|
|
|
feed_forward (nn.Layer): Feed-forward module instance.
|
|
|
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
|
|
|
can be used as the argument.
|
|
|
|
feed_forward_macaron (nn.Layer): Additional feed-forward module instance.
|
|
|
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
|
|
|
can be used as the argument.
|
|
|
|
conv_module (nn.Layer): Convolution module instance.
|
|
|
|
`ConvlutionModule` instance can be used as the argument.
|
|
|
|
dropout_rate (float): Dropout rate.
|
|
|
|
normalize_before (bool): Whether to use layer_norm before the first block.
|
|
|
|
concat_after (bool): Whether to concat attention layer's input and output.
|
|
|
|
if True, additional linear will be applied.
|
|
|
|
i.e. x -> x + linear(concat(x, att(x)))
|
|
|
|
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
|
|
|
stochastic_depth_rate (float): Proability to skip this layer.
|
|
|
|
During training, the layer may skip residual computation and return input
|
|
|
|
as-is with given probability.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
size,
|
|
|
|
self_attn,
|
|
|
|
feed_forward,
|
|
|
|
feed_forward_macaron,
|
|
|
|
conv_module,
|
|
|
|
dropout_rate,
|
|
|
|
normalize_before=True,
|
|
|
|
concat_after=False,
|
|
|
|
stochastic_depth_rate=0.0, ):
|
|
|
|
"""Construct an EncoderLayer object."""
|
|
|
|
super().__init__()
|
|
|
|
self.self_attn = self_attn
|
|
|
|
self.feed_forward = feed_forward
|
|
|
|
self.feed_forward_macaron = feed_forward_macaron
|
|
|
|
self.conv_module = conv_module
|
|
|
|
self.norm_ff = LayerNorm(size) # for the FNN module
|
|
|
|
self.norm_mha = LayerNorm(size) # for the MHA module
|
|
|
|
if feed_forward_macaron is not None:
|
|
|
|
self.norm_ff_macaron = LayerNorm(size)
|
|
|
|
self.ff_scale = 0.5
|
|
|
|
else:
|
|
|
|
self.ff_scale = 1.0
|
|
|
|
if self.conv_module is not None:
|
|
|
|
self.norm_conv = LayerNorm(size) # for the CNN module
|
|
|
|
self.norm_final = LayerNorm(
|
|
|
|
size) # for the final output of the block
|
|
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
|
|
self.size = size
|
|
|
|
self.normalize_before = normalize_before
|
|
|
|
self.concat_after = concat_after
|
|
|
|
if self.concat_after:
|
|
|
|
self.concat_linear = nn.Linear(size + size, size)
|
|
|
|
self.stochastic_depth_rate = stochastic_depth_rate
|
|
|
|
|
|
|
|
def forward(self, x_input, mask, cache=None):
|
|
|
|
"""Compute encoded features.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x_input(Union[Tuple, Tensor]): Input tensor w/ or w/o pos emb.
|
|
|
|
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
|
|
|
|
- w/o pos emb: Tensor (#batch, time, size).
|
|
|
|
mask(Tensor): Mask tensor for the input (#batch, time).
|
|
|
|
cache (Tensor):
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Output tensor (#batch, time, size).
|
|
|
|
Tensor: Mask tensor (#batch, time).
|
|
|
|
"""
|
|
|
|
if isinstance(x_input, tuple):
|
|
|
|
x, pos_emb = x_input[0], x_input[1]
|
|
|
|
else:
|
|
|
|
x, pos_emb = x_input, None
|
|
|
|
|
|
|
|
skip_layer = False
|
|
|
|
# with stochastic depth, residual connection `x + f(x)` becomes
|
|
|
|
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
|
|
|
stoch_layer_coeff = 1.0
|
|
|
|
if self.training and self.stochastic_depth_rate > 0:
|
|
|
|
skip_layer = paddle.rand(1).item() < self.stochastic_depth_rate
|
|
|
|
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
|
|
|
|
|
|
|
if skip_layer:
|
|
|
|
if cache is not None:
|
|
|
|
x = paddle.concat([cache, x], axis=1)
|
|
|
|
if pos_emb is not None:
|
|
|
|
return (x, pos_emb), mask
|
|
|
|
return x, mask
|
|
|
|
|
|
|
|
# whether to use macaron style
|
|
|
|
if self.feed_forward_macaron is not None:
|
|
|
|
residual = x
|
|
|
|
if self.normalize_before:
|
|
|
|
x = self.norm_ff_macaron(x)
|
|
|
|
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
|
|
|
|
self.feed_forward_macaron(x))
|
|
|
|
if not self.normalize_before:
|
|
|
|
x = self.norm_ff_macaron(x)
|
|
|
|
|
|
|
|
# multi-headed self-attention module
|
|
|
|
residual = x
|
|
|
|
if self.normalize_before:
|
|
|
|
x = self.norm_mha(x)
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
x_q = x
|
|
|
|
else:
|
|
|
|
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
|
|
|
x_q = x[:, -1:, :]
|
|
|
|
residual = residual[:, -1:, :]
|
|
|
|
mask = None if mask is None else mask[:, -1:, :]
|
|
|
|
|
|
|
|
if pos_emb is not None:
|
|
|
|
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
|
|
|
|
else:
|
|
|
|
x_att = self.self_attn(x_q, x, x, mask)
|
|
|
|
|
|
|
|
if self.concat_after:
|
|
|
|
x_concat = paddle.concat((x, x_att), axis=-1)
|
|
|
|
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
|
|
|
|
else:
|
|
|
|
x = residual + stoch_layer_coeff * self.dropout(x_att)
|
|
|
|
if not self.normalize_before:
|
|
|
|
x = self.norm_mha(x)
|
|
|
|
|
|
|
|
# convolution module
|
|
|
|
if self.conv_module is not None:
|
|
|
|
residual = x
|
|
|
|
if self.normalize_before:
|
|
|
|
x = self.norm_conv(x)
|
|
|
|
x = residual + stoch_layer_coeff * self.dropout(self.conv_module(x))
|
|
|
|
if not self.normalize_before:
|
|
|
|
x = self.norm_conv(x)
|
|
|
|
|
|
|
|
# feed forward module
|
|
|
|
residual = x
|
|
|
|
if self.normalize_before:
|
|
|
|
x = self.norm_ff(x)
|
|
|
|
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
|
|
|
|
self.feed_forward(x))
|
|
|
|
if not self.normalize_before:
|
|
|
|
x = self.norm_ff(x)
|
|
|
|
|
|
|
|
if self.conv_module is not None:
|
|
|
|
x = self.norm_final(x)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
x = paddle.concat([cache, x], axis=1)
|
|
|
|
|
|
|
|
if pos_emb is not None:
|
|
|
|
return (x, pos_emb), mask
|
|
|
|
|
|
|
|
return x, mask
|