|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Deepspeech2 ASR Online Model"""
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.s2t.models.ds2_online.conv import Conv2dSubsampling4Online
|
|
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
|
|
|
from paddlespeech.s2t.utils import layer_tools
|
|
|
|
from paddlespeech.s2t.utils.checkpoint import Checkpoint
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
__all__ = ['DeepSpeech2ModelOnline', 'DeepSpeech2InferModelOnline']
|
|
|
|
|
|
|
|
|
|
|
|
class CRNNEncoder(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
feat_size,
|
|
|
|
dict_size,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=4,
|
|
|
|
rnn_size=1024,
|
|
|
|
rnn_direction='forward',
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False):
|
|
|
|
super().__init__()
|
|
|
|
self.rnn_size = rnn_size
|
|
|
|
self.feat_size = feat_size # 161 for linear
|
|
|
|
self.dict_size = dict_size
|
|
|
|
self.num_rnn_layers = num_rnn_layers
|
|
|
|
self.num_fc_layers = num_fc_layers
|
|
|
|
self.rnn_direction = rnn_direction
|
|
|
|
self.fc_layers_size_list = fc_layers_size_list
|
|
|
|
self.use_gru = use_gru
|
|
|
|
self.conv = Conv2dSubsampling4Online(feat_size, 32, dropout_rate=0.0)
|
|
|
|
|
|
|
|
self.output_dim = self.conv.output_dim
|
|
|
|
|
|
|
|
i_size = self.conv.output_dim
|
|
|
|
self.rnn = nn.LayerList()
|
|
|
|
self.layernorm_list = nn.LayerList()
|
|
|
|
self.fc_layers_list = nn.LayerList()
|
|
|
|
if rnn_direction == 'bidirect' or rnn_direction == 'bidirectional':
|
|
|
|
layernorm_size = 2 * rnn_size
|
|
|
|
elif rnn_direction == 'forward':
|
|
|
|
layernorm_size = rnn_size
|
|
|
|
else:
|
|
|
|
raise Exception("Wrong rnn direction")
|
|
|
|
for i in range(0, num_rnn_layers):
|
|
|
|
if i == 0:
|
|
|
|
rnn_input_size = i_size
|
|
|
|
else:
|
|
|
|
rnn_input_size = layernorm_size
|
|
|
|
if use_gru is True:
|
|
|
|
self.rnn.append(
|
|
|
|
nn.GRU(
|
|
|
|
input_size=rnn_input_size,
|
|
|
|
hidden_size=rnn_size,
|
|
|
|
num_layers=1,
|
|
|
|
direction=rnn_direction))
|
|
|
|
else:
|
|
|
|
self.rnn.append(
|
|
|
|
nn.LSTM(
|
|
|
|
input_size=rnn_input_size,
|
|
|
|
hidden_size=rnn_size,
|
|
|
|
num_layers=1,
|
|
|
|
direction=rnn_direction))
|
|
|
|
self.layernorm_list.append(nn.LayerNorm(layernorm_size))
|
|
|
|
self.output_dim = layernorm_size
|
|
|
|
|
|
|
|
fc_input_size = layernorm_size
|
|
|
|
for i in range(self.num_fc_layers):
|
|
|
|
self.fc_layers_list.append(
|
|
|
|
nn.Linear(fc_input_size, fc_layers_size_list[i]))
|
|
|
|
fc_input_size = fc_layers_size_list[i]
|
|
|
|
self.output_dim = fc_layers_size_list[i]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def output_size(self):
|
|
|
|
return self.output_dim
|
|
|
|
|
|
|
|
def forward(self, x, x_lens, init_state_h_box=None, init_state_c_box=None):
|
|
|
|
"""Compute Encoder outputs
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (Tensor): [B, T, D]
|
|
|
|
x_lens (Tensor): [B]
|
|
|
|
init_state_h_box(Tensor): init_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
init_state_c_box(Tensor): init_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
Return:
|
|
|
|
x (Tensor): encoder outputs, [B, T, D]
|
|
|
|
x_lens (Tensor): encoder length, [B]
|
|
|
|
final_state_h_box(Tensor): final_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
final_state_c_box(Tensor): final_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
"""
|
|
|
|
if init_state_h_box is not None:
|
|
|
|
init_state_list = None
|
|
|
|
|
|
|
|
if self.use_gru is True:
|
|
|
|
init_state_h_list = paddle.split(
|
|
|
|
init_state_h_box, self.num_rnn_layers, axis=0)
|
|
|
|
init_state_list = init_state_h_list
|
|
|
|
else:
|
|
|
|
init_state_h_list = paddle.split(
|
|
|
|
init_state_h_box, self.num_rnn_layers, axis=0)
|
|
|
|
init_state_c_list = paddle.split(
|
|
|
|
init_state_c_box, self.num_rnn_layers, axis=0)
|
|
|
|
init_state_list = [(init_state_h_list[i], init_state_c_list[i])
|
|
|
|
for i in range(self.num_rnn_layers)]
|
|
|
|
else:
|
|
|
|
init_state_list = [None] * self.num_rnn_layers
|
|
|
|
|
|
|
|
x, x_lens = self.conv(x, x_lens)
|
|
|
|
final_chunk_state_list = []
|
|
|
|
for i in range(0, self.num_rnn_layers):
|
|
|
|
x, final_state = self.rnn[i](x, init_state_list[i],
|
|
|
|
x_lens) #[B, T, D]
|
|
|
|
final_chunk_state_list.append(final_state)
|
|
|
|
x = self.layernorm_list[i](x)
|
|
|
|
|
|
|
|
for i in range(self.num_fc_layers):
|
|
|
|
x = self.fc_layers_list[i](x)
|
|
|
|
x = F.relu(x)
|
|
|
|
|
|
|
|
if self.use_gru is True:
|
|
|
|
final_chunk_state_h_box = paddle.concat(
|
|
|
|
final_chunk_state_list, axis=0)
|
|
|
|
final_chunk_state_c_box = init_state_c_box
|
|
|
|
else:
|
|
|
|
final_chunk_state_h_list = [
|
|
|
|
final_chunk_state_list[i][0] for i in range(self.num_rnn_layers)
|
|
|
|
]
|
|
|
|
final_chunk_state_c_list = [
|
|
|
|
final_chunk_state_list[i][1] for i in range(self.num_rnn_layers)
|
|
|
|
]
|
|
|
|
final_chunk_state_h_box = paddle.concat(
|
|
|
|
final_chunk_state_h_list, axis=0)
|
|
|
|
final_chunk_state_c_box = paddle.concat(
|
|
|
|
final_chunk_state_c_list, axis=0)
|
|
|
|
|
|
|
|
return x, x_lens, final_chunk_state_h_box, final_chunk_state_c_box
|
|
|
|
|
|
|
|
def forward_chunk_by_chunk(self, x, x_lens, decoder_chunk_size=8):
|
|
|
|
"""Compute Encoder outputs
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (Tensor): [B, T, D]
|
|
|
|
x_lens (Tensor): [B]
|
|
|
|
decoder_chunk_size: The chunk size of decoder
|
|
|
|
Returns:
|
|
|
|
eouts_list (List of Tensor): The list of encoder outputs in chunk_size: [B, chunk_size, D] * num_chunks
|
|
|
|
eouts_lens_list (List of Tensor): The list of encoder length in chunk_size: [B] * num_chunks
|
|
|
|
final_state_h_box(Tensor): final_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
final_state_c_box(Tensor): final_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
|
|
|
|
"""
|
|
|
|
subsampling_rate = self.conv.subsampling_rate
|
|
|
|
receptive_field_length = self.conv.receptive_field_length
|
|
|
|
chunk_size = (decoder_chunk_size - 1
|
|
|
|
) * subsampling_rate + receptive_field_length
|
|
|
|
chunk_stride = subsampling_rate * decoder_chunk_size
|
|
|
|
max_len = x.shape[1]
|
|
|
|
assert (chunk_size <= max_len)
|
|
|
|
|
|
|
|
eouts_chunk_list = []
|
|
|
|
eouts_chunk_lens_list = []
|
|
|
|
if (max_len - chunk_size) % chunk_stride != 0:
|
|
|
|
padding_len = chunk_stride - (max_len - chunk_size) % chunk_stride
|
|
|
|
else:
|
|
|
|
padding_len = 0
|
|
|
|
padding = paddle.zeros((x.shape[0], padding_len, x.shape[2]))
|
|
|
|
padded_x = paddle.concat([x, padding], axis=1)
|
|
|
|
num_chunk = (max_len + padding_len - chunk_size) / chunk_stride + 1
|
|
|
|
num_chunk = int(num_chunk)
|
|
|
|
chunk_state_h_box = None
|
|
|
|
chunk_state_c_box = None
|
|
|
|
final_state_h_box = None
|
|
|
|
final_state_c_box = None
|
|
|
|
for i in range(0, num_chunk):
|
|
|
|
start = i * chunk_stride
|
|
|
|
end = start + chunk_size
|
|
|
|
x_chunk = padded_x[:, start:end, :]
|
|
|
|
|
|
|
|
x_len_left = paddle.where(x_lens - i * chunk_stride < 0,
|
|
|
|
paddle.zeros_like(x_lens),
|
|
|
|
x_lens - i * chunk_stride)
|
|
|
|
x_chunk_len_tmp = paddle.ones_like(x_lens) * chunk_size
|
|
|
|
x_chunk_lens = paddle.where(x_len_left < x_chunk_len_tmp,
|
|
|
|
x_len_left, x_chunk_len_tmp)
|
|
|
|
|
|
|
|
eouts_chunk, eouts_chunk_lens, chunk_state_h_box, chunk_state_c_box = self.forward(
|
|
|
|
x_chunk, x_chunk_lens, chunk_state_h_box, chunk_state_c_box)
|
|
|
|
|
|
|
|
eouts_chunk_list.append(eouts_chunk)
|
|
|
|
eouts_chunk_lens_list.append(eouts_chunk_lens)
|
|
|
|
final_state_h_box = chunk_state_h_box
|
|
|
|
final_state_c_box = chunk_state_c_box
|
|
|
|
return eouts_chunk_list, eouts_chunk_lens_list, final_state_h_box, final_state_c_box
|
|
|
|
|
|
|
|
|
|
|
|
class DeepSpeech2ModelOnline(nn.Layer):
|
|
|
|
"""The DeepSpeech2 network structure for online.
|
|
|
|
|
|
|
|
:param audio: Audio spectrogram data layer.
|
|
|
|
:type audio: Variable
|
|
|
|
:param text: Transcription text data layer.
|
|
|
|
:type text: Variable
|
|
|
|
:param audio_len: Valid sequence length data layer.
|
|
|
|
:type audio_len: Variable
|
|
|
|
:param feat_size: feature size for audio.
|
|
|
|
:type feat_size: int
|
|
|
|
:param dict_size: Dictionary size for tokenized transcription.
|
|
|
|
:type dict_size: int
|
|
|
|
:param num_conv_layers: Number of stacking convolution layers.
|
|
|
|
:type num_conv_layers: int
|
|
|
|
:param num_rnn_layers: Number of stacking RNN layers.
|
|
|
|
:type num_rnn_layers: int
|
|
|
|
:param rnn_size: RNN layer size (dimension of RNN cells).
|
|
|
|
:type rnn_size: int
|
|
|
|
:param num_fc_layers: Number of stacking FC layers.
|
|
|
|
:type num_fc_layers: int
|
|
|
|
:param fc_layers_size_list: The list of FC layer sizes.
|
|
|
|
:type fc_layers_size_list: [int,]
|
|
|
|
:param use_gru: Use gru if set True. Use simple rnn if set False.
|
|
|
|
:type use_gru: bool
|
|
|
|
:return: A tuple of an output unnormalized log probability layer (
|
|
|
|
before softmax) and a ctc cost layer.
|
|
|
|
:rtype: tuple of LayerOutput
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
feat_size,
|
|
|
|
dict_size,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=4,
|
|
|
|
rnn_size=1024,
|
|
|
|
rnn_direction='forward',
|
|
|
|
num_fc_layers=2,
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
use_gru=False,
|
|
|
|
blank_id=0,
|
|
|
|
ctc_grad_norm_type=None, ):
|
|
|
|
super().__init__()
|
|
|
|
self.encoder = CRNNEncoder(
|
|
|
|
feat_size=feat_size,
|
|
|
|
dict_size=dict_size,
|
|
|
|
num_conv_layers=num_conv_layers,
|
|
|
|
num_rnn_layers=num_rnn_layers,
|
|
|
|
rnn_direction=rnn_direction,
|
|
|
|
num_fc_layers=num_fc_layers,
|
|
|
|
fc_layers_size_list=fc_layers_size_list,
|
|
|
|
rnn_size=rnn_size,
|
|
|
|
use_gru=use_gru)
|
|
|
|
|
|
|
|
self.decoder = CTCDecoder(
|
|
|
|
odim=dict_size, # <blank> is in vocab
|
|
|
|
enc_n_units=self.encoder.output_size,
|
|
|
|
blank_id=blank_id,
|
|
|
|
dropout_rate=0.0,
|
|
|
|
reduction=True, # sum
|
|
|
|
batch_average=True, # sum / batch_size
|
|
|
|
grad_norm_type=ctc_grad_norm_type)
|
|
|
|
|
|
|
|
def forward(self, audio, audio_len, text, text_len):
|
|
|
|
"""Compute Model loss
|
|
|
|
|
|
|
|
Args:
|
|
|
|
audio (Tensor): [B, T, D]
|
|
|
|
audio_len (Tensor): [B]
|
|
|
|
text (Tensor): [B, U]
|
|
|
|
text_len (Tensor): [B]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
loss (Tensor): [1]
|
|
|
|
"""
|
|
|
|
eouts, eouts_len, final_state_h_box, final_state_c_box = self.encoder(
|
|
|
|
audio, audio_len, None, None)
|
|
|
|
loss = self.decoder(eouts, eouts_len, text, text_len)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def decode(self, audio, audio_len):
|
|
|
|
# decoders only accept string encoded in utf-8
|
|
|
|
# Make sure the decoder has been initialized
|
|
|
|
eouts, eouts_len, final_state_h_box, final_state_c_box = self.encoder(
|
|
|
|
audio, audio_len, None, None)
|
|
|
|
probs = self.decoder.softmax(eouts)
|
|
|
|
batch_size = probs.shape[0]
|
|
|
|
self.decoder.reset_decoder(batch_size=batch_size)
|
|
|
|
self.decoder.next(probs, eouts_len)
|
|
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
|
|
return trans_best
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(cls, dataloader, config, checkpoint_path):
|
|
|
|
"""Build a DeepSpeech2Model model from a pretrained model.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
dataloader: paddle.io.DataLoader
|
|
|
|
|
|
|
|
config: yacs.config.CfgNode
|
|
|
|
model configs
|
|
|
|
|
|
|
|
checkpoint_path: Path or str
|
|
|
|
the path of pretrained model checkpoint, without extension name
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
DeepSpeech2ModelOnline
|
|
|
|
The model built from pretrained result.
|
|
|
|
"""
|
|
|
|
model = cls(
|
|
|
|
feat_size=dataloader.collate_fn.feature_size,
|
|
|
|
dict_size=dataloader.collate_fn.vocab_size,
|
|
|
|
num_conv_layers=config.num_conv_layers,
|
|
|
|
num_rnn_layers=config.num_rnn_layers,
|
|
|
|
rnn_size=config.rnn_layer_size,
|
|
|
|
rnn_direction=config.rnn_direction,
|
|
|
|
num_fc_layers=config.num_fc_layers,
|
|
|
|
fc_layers_size_list=config.fc_layers_size_list,
|
|
|
|
use_gru=config.use_gru,
|
|
|
|
blank_id=config.blank_id,
|
|
|
|
ctc_grad_norm_type=config.get('ctc_grad_norm_type', None), )
|
|
|
|
infos = Checkpoint().load_parameters(
|
|
|
|
model, checkpoint_path=checkpoint_path)
|
|
|
|
logger.info(f"checkpoint info: {infos}")
|
|
|
|
layer_tools.summary(model)
|
|
|
|
return model
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_config(cls, config):
|
|
|
|
"""Build a DeepSpeec2ModelOnline from config
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
config: yacs.config.CfgNode
|
|
|
|
config
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
DeepSpeech2ModelOnline
|
|
|
|
The model built from config.
|
|
|
|
"""
|
|
|
|
model = cls(
|
|
|
|
feat_size=config.input_dim,
|
|
|
|
dict_size=config.output_dim,
|
|
|
|
num_conv_layers=config.num_conv_layers,
|
|
|
|
num_rnn_layers=config.num_rnn_layers,
|
|
|
|
rnn_size=config.rnn_layer_size,
|
|
|
|
rnn_direction=config.rnn_direction,
|
|
|
|
num_fc_layers=config.num_fc_layers,
|
|
|
|
fc_layers_size_list=config.fc_layers_size_list,
|
|
|
|
use_gru=config.use_gru,
|
|
|
|
blank_id=config.blank_id,
|
|
|
|
ctc_grad_norm_type=config.get('ctc_grad_norm_type', None), )
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
class DeepSpeech2InferModelOnline(DeepSpeech2ModelOnline):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
def forward(self, audio_chunk, audio_chunk_lens, chunk_state_h_box,
|
|
|
|
chunk_state_c_box):
|
|
|
|
eouts_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box = self.encoder(
|
|
|
|
audio_chunk, audio_chunk_lens, chunk_state_h_box, chunk_state_c_box)
|
|
|
|
probs_chunk = self.decoder.softmax(eouts_chunk)
|
|
|
|
return probs_chunk, eouts_chunk_lens, final_state_h_box, final_state_c_box
|
|
|
|
|
|
|
|
def export(self):
|
|
|
|
static_model = paddle.jit.to_static(
|
|
|
|
self,
|
|
|
|
input_spec=[
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, None,
|
|
|
|
self.encoder.feat_size], #[B, chunk_size, feat_dim]
|
|
|
|
dtype='float32'),
|
|
|
|
paddle.static.InputSpec(shape=[None],
|
|
|
|
dtype='int64'), # audio_length, [B]
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, None, None], dtype='float32'),
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, None, None], dtype='float32')
|
|
|
|
])
|
|
|
|
return static_model
|