You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/kws/exps/mdtc/score.py

104 lines
3.4 KiB

3 years ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import paddle
from mdtc import KWSModel
from mdtc import MDTC
from tqdm import tqdm
from paddleaudio.datasets import HeySnips
def collate_features(batch):
# (key, feat, label) in one sample
collate_start = time.time()
keys = []
feats = []
labels = []
lengths = []
for sample in batch:
keys.append(sample[0])
feats.append(sample[1])
labels.append(sample[2])
lengths.append(sample[1].shape[0])
max_length = max(lengths)
for i in range(len(feats)):
feats[i] = paddle.nn.functional.pad(
feats[i], [0, max_length - feats[i].shape[0], 0, 0],
data_format='NLC')
return keys, paddle.stack(feats), paddle.to_tensor(
labels), paddle.to_tensor(lengths)
if __name__ == '__main__':
# Dataset
feat_conf = {
# 'n_mfcc': 80,
'n_mels': 80,
'frame_shift': 10,
'frame_length': 25,
# 'dither': 1.0,
}
test_ds = HeySnips(
mode='test', feat_type='kaldi_fbank', sample_rate=16000, **feat_conf)
test_sampler = paddle.io.BatchSampler(
test_ds, batch_size=32, drop_last=False)
test_loader = paddle.io.DataLoader(
test_ds,
batch_sampler=test_sampler,
num_workers=16,
return_list=True,
use_buffer_reader=True,
collate_fn=collate_features, )
# Model
backbone = MDTC(
stack_num=3,
stack_size=4,
in_channels=80,
res_channels=32,
kernel_size=5,
causal=True, )
model = KWSModel(backbone=backbone, num_keywords=1)
model = paddle.DataParallel(model)
# kws_checkpoint = '/ssd3/chenxiaojie06/PaddleSpeech/DeepSpeech/paddlespeech/kws/models/checkpoint/epoch_10_0.8903940343290826/model.pdparams'
kws_checkpoint = os.path.join(
os.path.abspath(sys.argv[1]), 'model.pdparams')
model.set_state_dict(paddle.load(kws_checkpoint))
model.eval()
score_abs_path = os.path.join(os.path.abspath(sys.argv[1]), 'score.txt')
with paddle.no_grad(), open(score_abs_path, 'w', encoding='utf8') as fout:
for batch_idx, batch in enumerate(
tqdm(test_loader, total=len(test_loader))):
keys, feats, labels, lengths = batch
logits = model(feats)
num_keywords = logits.shape[2]
for i in range(len(keys)):
key = keys[i]
score = logits[i][:lengths[i]]
for keyword_i in range(num_keywords):
keyword_scores = score[:, keyword_i]
score_frames = ' '.join(
['{:.6f}'.format(x) for x in keyword_scores.tolist()])
fout.write(
'{} {} {}\n'.format(key, keyword_i, score_frames))
print('Scores saved to: {}'.format(score_abs_path))