You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
5.2 KiB
138 lines
5.2 KiB
2 years ago
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
|
||
2 years ago
|
#include "nnet/u2_nnet.h"
|
||
2 years ago
|
#include "base/common.h"
|
||
|
#include "decoder/param.h"
|
||
|
#include "frontend/feature_pipeline.h"
|
||
2 years ago
|
#include "frontend/wave-reader.h"
|
||
2 years ago
|
#include "kaldi/util/table-types.h"
|
||
|
#include "nnet/decodable.h"
|
||
|
#include "nnet/nnet_producer.h"
|
||
|
|
||
|
DEFINE_string(wav_rspecifier, "", "test wav rspecifier");
|
||
|
DEFINE_string(nnet_prob_wspecifier, "", "nnet porb wspecifier");
|
||
|
DEFINE_double(streaming_chunk, 0.36, "streaming feature chunk size");
|
||
|
DEFINE_int32(sample_rate, 16000, "sample rate");
|
||
|
|
||
|
using kaldi::BaseFloat;
|
||
|
using kaldi::Matrix;
|
||
|
using std::vector;
|
||
|
|
||
|
int main(int argc, char* argv[]) {
|
||
|
gflags::SetUsageMessage("Usage:");
|
||
|
gflags::ParseCommandLineFlags(&argc, &argv, false);
|
||
|
google::InitGoogleLogging(argv[0]);
|
||
|
google::InstallFailureSignalHandler();
|
||
|
FLAGS_logtostderr = 1;
|
||
|
|
||
|
int32 num_done = 0, num_err = 0;
|
||
|
int sample_rate = FLAGS_sample_rate;
|
||
|
float streaming_chunk = FLAGS_streaming_chunk;
|
||
|
int chunk_sample_size = streaming_chunk * sample_rate;
|
||
|
|
||
|
CHECK_GT(FLAGS_wav_rspecifier.size(), 0);
|
||
|
CHECK_GT(FLAGS_nnet_prob_wspecifier.size(), 0);
|
||
|
CHECK_GT(FLAGS_model_path.size(), 0);
|
||
|
LOG(INFO) << "input rspecifier: " << FLAGS_wav_rspecifier;
|
||
|
LOG(INFO) << "output wspecifier: " << FLAGS_nnet_prob_wspecifier;
|
||
|
LOG(INFO) << "model path: " << FLAGS_model_path;
|
||
|
|
||
|
kaldi::SequentialTableReader<kaldi::WaveHolder> wav_reader(
|
||
|
FLAGS_wav_rspecifier);
|
||
|
kaldi::BaseFloatMatrixWriter nnet_out_writer(FLAGS_nnet_prob_wspecifier);
|
||
|
|
||
|
ppspeech::ModelOptions model_opts = ppspeech::ModelOptions::InitFromFlags();
|
||
|
ppspeech::FeaturePipelineOptions feature_opts =
|
||
|
ppspeech::FeaturePipelineOptions::InitFromFlags();
|
||
|
feature_opts.assembler_opts.fill_zero = false;
|
||
|
|
||
|
std::shared_ptr<ppspeech::U2Nnet> nnet(new ppspeech::U2Nnet(model_opts));
|
||
|
std::shared_ptr<ppspeech::FeaturePipeline> feature_pipeline(
|
||
|
new ppspeech::FeaturePipeline(feature_opts));
|
||
|
std::shared_ptr<ppspeech::NnetProducer> nnet_producer(
|
||
|
new ppspeech::NnetProducer(nnet, feature_pipeline));
|
||
|
kaldi::Timer timer;
|
||
|
float tot_wav_duration = 0;
|
||
|
|
||
|
for (; !wav_reader.Done(); wav_reader.Next()) {
|
||
|
std::string utt = wav_reader.Key();
|
||
|
const kaldi::WaveData& wave_data = wav_reader.Value();
|
||
|
LOG(INFO) << "utt: " << utt;
|
||
|
LOG(INFO) << "wav dur: " << wave_data.Duration() << " sec.";
|
||
|
double dur = wave_data.Duration();
|
||
|
tot_wav_duration += dur;
|
||
|
|
||
|
int32 this_channel = 0;
|
||
|
kaldi::SubVector<kaldi::BaseFloat> waveform(wave_data.Data(),
|
||
|
this_channel);
|
||
|
int tot_samples = waveform.Dim();
|
||
|
LOG(INFO) << "wav len (sample): " << tot_samples;
|
||
|
|
||
|
int sample_offset = 0;
|
||
|
kaldi::Timer timer;
|
||
|
|
||
|
while (sample_offset < tot_samples) {
|
||
|
int cur_chunk_size =
|
||
|
std::min(chunk_sample_size, tot_samples - sample_offset);
|
||
|
|
||
|
std::vector<kaldi::BaseFloat> wav_chunk(cur_chunk_size);
|
||
|
for (int i = 0; i < cur_chunk_size; ++i) {
|
||
|
wav_chunk[i] = waveform(sample_offset + i);
|
||
|
}
|
||
|
|
||
|
nnet_producer->Accept(wav_chunk);
|
||
|
if (cur_chunk_size < chunk_sample_size) {
|
||
|
nnet_producer->SetInputFinished();
|
||
|
}
|
||
|
|
||
|
// no overlap
|
||
|
sample_offset += cur_chunk_size;
|
||
|
}
|
||
|
CHECK(sample_offset == tot_samples);
|
||
|
|
||
|
std::vector<std::vector<kaldi::BaseFloat>> prob_vec;
|
||
2 years ago
|
while (1) {
|
||
2 years ago
|
std::vector<kaldi::BaseFloat> logprobs;
|
||
|
bool isok = nnet_producer->Read(&logprobs);
|
||
|
if (nnet_producer->IsFinished()) break;
|
||
|
if (isok == false) continue;
|
||
|
prob_vec.push_back(logprobs);
|
||
|
}
|
||
|
{
|
||
|
// writer nnet output
|
||
|
kaldi::MatrixIndexT nrow = prob_vec.size();
|
||
|
kaldi::MatrixIndexT ncol = prob_vec[0].size();
|
||
|
LOG(INFO) << "nnet out shape: " << nrow << ", " << ncol;
|
||
|
kaldi::Matrix<kaldi::BaseFloat> nnet_out(nrow, ncol);
|
||
|
for (int32 row_idx = 0; row_idx < nrow; ++row_idx) {
|
||
|
for (int32 col_idx = 0; col_idx < ncol; ++col_idx) {
|
||
|
nnet_out(row_idx, col_idx) = prob_vec[row_idx][col_idx];
|
||
|
}
|
||
|
}
|
||
|
nnet_out_writer.Write(utt, nnet_out);
|
||
|
}
|
||
|
nnet_producer->Reset();
|
||
|
}
|
||
|
|
||
|
nnet_producer->Wait();
|
||
|
double elapsed = timer.Elapsed();
|
||
|
LOG(INFO) << "Program cost:" << elapsed << " sec";
|
||
|
|
||
|
LOG(INFO) << "Done " << num_done << " utterances, " << num_err
|
||
|
<< " with errors.";
|
||
|
return (num_done != 0 ? 0 : 1);
|
||
|
}
|