This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/)
Download LJSpeech-1.1 from it's [Official Website](https://keithito.com/LJ-Speech-Dataset/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/LJSpeech-1.1`.
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/LJSpeech-1.1`.
Assume the path to the MFA result of LJSpeech-1.1 is `./ljspeech_alignment`.
Run the command below to
1.**source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and the id of each utterance.
1.`--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2.`--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3.`--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4.`--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5.`--phones-dict` is the path of the phone vocabulary file.
### Synthesizing
We use [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1) as the neural vocoder.
Download pretrained parallel wavegan model from [pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip) and unzip it.
2.`--am_config`, `--am_ckpt`, `--am_stat` and `--phones_dict` are arguments for acoustic model, which correspond to the 4 files in the Tacotron2 pretrained model.