You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/cli/tts/infer.py

536 lines
19 KiB

3 years ago
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from collections import OrderedDict
3 years ago
from typing import Any
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import paddle
import soundfile as sf
import yaml
from yacs.config import CfgNode
from ..executor import BaseExecutor
from ..log import logger
3 years ago
from ..utils import cli_register
from ..utils import stats_wrapper
from .pretrained_models import model_alias
from .pretrained_models import pretrained_models
3 years ago
from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.utils.dynamic_import import dynamic_import
3 years ago
__all__ = ['TTSExecutor']
@cli_register(
name='paddlespeech.tts', description='Text to Speech infer command.')
class TTSExecutor(BaseExecutor):
def __init__(self):
super().__init__()
self.model_alias = model_alias
self.pretrained_models = pretrained_models
3 years ago
self.parser = argparse.ArgumentParser(
prog='paddlespeech.tts', add_help=True)
self.parser.add_argument(
'--input', type=str, default=None, help='Input text to generate.')
3 years ago
# acoustic model
self.parser.add_argument(
'--am',
type=str,
default='fastspeech2_csmsc',
choices=[
'speedyspeech_csmsc',
'fastspeech2_csmsc',
'fastspeech2_ljspeech',
'fastspeech2_aishell3',
'fastspeech2_vctk',
'tacotron2_csmsc',
'tacotron2_ljspeech',
3 years ago
],
help='Choose acoustic model type of tts task.')
self.parser.add_argument(
'--am_config',
type=str,
default=None,
help='Config of acoustic model. Use deault config when it is None.')
self.parser.add_argument(
'--am_ckpt',
type=str,
default=None,
help='Checkpoint file of acoustic model.')
self.parser.add_argument(
"--am_stat",
type=str,
3 years ago
default=None,
3 years ago
help="mean and standard deviation used to normalize spectrogram when training acoustic model."
)
self.parser.add_argument(
"--phones_dict",
type=str,
default=None,
help="phone vocabulary file.")
self.parser.add_argument(
"--tones_dict",
type=str,
default=None,
help="tone vocabulary file.")
self.parser.add_argument(
"--speaker_dict",
type=str,
default=None,
help="speaker id map file.")
self.parser.add_argument(
'--spk_id',
type=int,
default=0,
help='spk id for multi speaker acoustic model')
# vocoder
self.parser.add_argument(
'--voc',
type=str,
default='pwgan_csmsc',
choices=[
'pwgan_csmsc',
'pwgan_ljspeech',
'pwgan_aishell3',
'pwgan_vctk',
'mb_melgan_csmsc',
'style_melgan_csmsc',
'hifigan_csmsc',
'hifigan_ljspeech',
'hifigan_aishell3',
'hifigan_vctk',
'wavernn_csmsc',
3 years ago
],
help='Choose vocoder type of tts task.')
self.parser.add_argument(
'--voc_config',
type=str,
default=None,
help='Config of voc. Use deault config when it is None.')
self.parser.add_argument(
'--voc_ckpt',
type=str,
default=None,
help='Checkpoint file of voc.')
self.parser.add_argument(
"--voc_stat",
type=str,
3 years ago
default=None,
3 years ago
help="mean and standard deviation used to normalize spectrogram when training voc."
)
# other
self.parser.add_argument(
'--lang',
type=str,
default='zh',
help='Choose model language. zh or en')
self.parser.add_argument(
'--device',
type=str,
default=paddle.get_device(),
help='Choose device to execute model inference.')
self.parser.add_argument(
'--output', type=str, default='output.wav', help='output file name')
self.parser.add_argument(
'-d',
'--job_dump_result',
action='store_true',
help='Save job result into file.')
self.parser.add_argument(
'-v',
'--verbose',
action='store_true',
help='Increase logger verbosity of current task.')
3 years ago
def _init_from_path(
self,
am: str='fastspeech2_csmsc',
am_config: Optional[os.PathLike]=None,
am_ckpt: Optional[os.PathLike]=None,
am_stat: Optional[os.PathLike]=None,
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None,
speaker_dict: Optional[os.PathLike]=None,
voc: str='pwgan_csmsc',
voc_config: Optional[os.PathLike]=None,
voc_ckpt: Optional[os.PathLike]=None,
voc_stat: Optional[os.PathLike]=None,
lang: str='zh', ):
"""
Init model and other resources from a specific path.
"""
3 years ago
if hasattr(self, 'am_inference') and hasattr(self, 'voc_inference'):
3 years ago
logger.info('Models had been initialized.')
return
# am
am_tag = am + '-' + lang
if am_ckpt is None or am_config is None or am_stat is None or phones_dict is None:
am_res_path = self._get_pretrained_path(am_tag)
self.am_res_path = am_res_path
self.am_config = os.path.join(
am_res_path, self.pretrained_models[am_tag]['config'])
3 years ago
self.am_ckpt = os.path.join(am_res_path,
self.pretrained_models[am_tag]['ckpt'])
3 years ago
self.am_stat = os.path.join(
am_res_path, self.pretrained_models[am_tag]['speech_stats'])
3 years ago
# must have phones_dict in acoustic
self.phones_dict = os.path.join(
am_res_path, self.pretrained_models[am_tag]['phones_dict'])
3 years ago
logger.info(am_res_path)
logger.info(self.am_config)
logger.info(self.am_ckpt)
else:
self.am_config = os.path.abspath(am_config)
self.am_ckpt = os.path.abspath(am_ckpt)
self.am_stat = os.path.abspath(am_stat)
self.phones_dict = os.path.abspath(phones_dict)
self.am_res_path = os.path.dirname(os.path.abspath(self.am_config))
# for speedyspeech
self.tones_dict = None
if 'tones_dict' in self.pretrained_models[am_tag]:
3 years ago
self.tones_dict = os.path.join(
am_res_path, self.pretrained_models[am_tag]['tones_dict'])
3 years ago
if tones_dict:
self.tones_dict = tones_dict
# for multi speaker fastspeech2
self.speaker_dict = None
if 'speaker_dict' in self.pretrained_models[am_tag]:
3 years ago
self.speaker_dict = os.path.join(
am_res_path, self.pretrained_models[am_tag]['speaker_dict'])
3 years ago
if speaker_dict:
self.speaker_dict = speaker_dict
# voc
voc_tag = voc + '-' + lang
if voc_ckpt is None or voc_config is None or voc_stat is None:
voc_res_path = self._get_pretrained_path(voc_tag)
self.voc_res_path = voc_res_path
self.voc_config = os.path.join(
voc_res_path, self.pretrained_models[voc_tag]['config'])
self.voc_ckpt = os.path.join(
voc_res_path, self.pretrained_models[voc_tag]['ckpt'])
3 years ago
self.voc_stat = os.path.join(
voc_res_path, self.pretrained_models[voc_tag]['speech_stats'])
3 years ago
logger.info(voc_res_path)
logger.info(self.voc_config)
logger.info(self.voc_ckpt)
else:
self.voc_config = os.path.abspath(voc_config)
self.voc_ckpt = os.path.abspath(voc_ckpt)
self.voc_stat = os.path.abspath(voc_stat)
self.voc_res_path = os.path.dirname(
os.path.abspath(self.voc_config))
# Init body.
with open(self.am_config) as f:
self.am_config = CfgNode(yaml.safe_load(f))
with open(self.voc_config) as f:
self.voc_config = CfgNode(yaml.safe_load(f))
with open(self.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
tone_size = None
if self.tones_dict:
with open(self.tones_dict, "r") as f:
tone_id = [line.strip().split() for line in f.readlines()]
tone_size = len(tone_id)
print("tone_size:", tone_size)
spk_num = None
if self.speaker_dict:
with open(self.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id)
print("spk_num:", spk_num)
# frontend
if lang == 'zh':
self.frontend = Frontend(
phone_vocab_path=self.phones_dict,
tone_vocab_path=self.tones_dict)
elif lang == 'en':
self.frontend = English(phone_vocab_path=self.phones_dict)
print("frontend done!")
# acoustic model
odim = self.am_config.n_mels
# model: {model_name}_{dataset}
am_name = am[:am.rindex('_')]
am_class = dynamic_import(am_name, self.model_alias)
am_inference_class = dynamic_import(am_name + '_inference',
self.model_alias)
3 years ago
if am_name == 'fastspeech2':
am = am_class(
idim=vocab_size,
odim=odim,
spk_num=spk_num,
**self.am_config["model"])
elif am_name == 'speedyspeech':
am = am_class(
vocab_size=vocab_size,
tone_size=tone_size,
**self.am_config["model"])
elif am_name == 'tacotron2':
am = am_class(idim=vocab_size, odim=odim, **self.am_config["model"])
3 years ago
am.set_state_dict(paddle.load(self.am_ckpt)["main_params"])
am.eval()
am_mu, am_std = np.load(self.am_stat)
am_mu = paddle.to_tensor(am_mu)
am_std = paddle.to_tensor(am_std)
am_normalizer = ZScore(am_mu, am_std)
self.am_inference = am_inference_class(am_normalizer, am)
self.am_inference.eval()
3 years ago
print("acoustic model done!")
# vocoder
# model: {model_name}_{dataset}
3 years ago
voc_name = voc[:voc.rindex('_')]
voc_class = dynamic_import(voc_name, self.model_alias)
3 years ago
voc_inference_class = dynamic_import(voc_name + '_inference',
self.model_alias)
if voc_name != 'wavernn':
voc = voc_class(**self.voc_config["generator_params"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"])
voc.remove_weight_norm()
voc.eval()
else:
voc = voc_class(**self.voc_config["model"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["main_params"])
voc.eval()
3 years ago
voc_mu, voc_std = np.load(self.voc_stat)
voc_mu = paddle.to_tensor(voc_mu)
voc_std = paddle.to_tensor(voc_std)
voc_normalizer = ZScore(voc_mu, voc_std)
self.voc_inference = voc_inference_class(voc_normalizer, voc)
self.voc_inference.eval()
3 years ago
print("voc done!")
def preprocess(self, input: Any, *args, **kwargs):
"""
Input preprocess and return paddle.Tensor stored in self._inputs.
Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed.
Args:
input (Any): Input text/file/stream or other content.
"""
pass
@paddle.no_grad()
def infer(self,
text: str,
lang: str='zh',
am: str='fastspeech2_csmsc',
spk_id: int=0):
"""
Model inference and result stored in self.output.
"""
3 years ago
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
3 years ago
get_tone_ids = False
merge_sentences = False
frontend_st = time.time()
3 years ago
if am_name == 'speedyspeech':
3 years ago
get_tone_ids = True
if lang == 'zh':
input_ids = self.frontend.get_input_ids(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids)
3 years ago
phone_ids = input_ids["phone_ids"]
if get_tone_ids:
tone_ids = input_ids["tone_ids"]
elif lang == 'en':
input_ids = self.frontend.get_input_ids(
text, merge_sentences=merge_sentences)
3 years ago
phone_ids = input_ids["phone_ids"]
else:
print("lang should in {'zh', 'en'}!")
self.frontend_time = time.time() - frontend_st
3 years ago
self.am_time = 0
self.voc_time = 0
flags = 0
for i in range(len(phone_ids)):
am_st = time.time()
part_phone_ids = phone_ids[i]
# am
if am_name == 'speedyspeech':
part_tone_ids = tone_ids[i]
mel = self.am_inference(part_phone_ids, part_tone_ids)
# fastspeech2
3 years ago
else:
# multi speaker
if am_dataset in {"aishell3", "vctk"}:
mel = self.am_inference(
part_phone_ids, spk_id=paddle.to_tensor(spk_id))
else:
mel = self.am_inference(part_phone_ids)
self.am_time += (time.time() - am_st)
# voc
voc_st = time.time()
wav = self.voc_inference(mel)
if flags == 0:
wav_all = wav
flags = 1
else:
wav_all = paddle.concat([wav_all, wav])
self.voc_time += (time.time() - voc_st)
self._outputs['wav'] = wav_all
3 years ago
def postprocess(self, output: str='output.wav') -> Union[str, os.PathLike]:
3 years ago
"""
Output postprocess and return results.
This method get model output from self._outputs and convert it into human-readable results.
Returns:
Union[str, os.PathLike]: Human-readable results such as texts and audio files.
"""
3 years ago
output = os.path.abspath(os.path.expanduser(output))
3 years ago
sf.write(
output, self._outputs['wav'].numpy(), samplerate=self.am_config.fs)
return output
def execute(self, argv: List[str]) -> bool:
"""
Command line entry.
"""
args = self.parser.parse_args(argv)
am = args.am
am_config = args.am_config
am_ckpt = args.am_ckpt
am_stat = args.am_stat
phones_dict = args.phones_dict
tones_dict = args.tones_dict
speaker_dict = args.speaker_dict
voc = args.voc
voc_config = args.voc_config
voc_ckpt = args.voc_ckpt
voc_stat = args.voc_stat
lang = args.lang
device = args.device
spk_id = args.spk_id
if not args.verbose:
self.disable_task_loggers()
3 years ago
task_source = self.get_task_source(args.input)
task_results = OrderedDict()
has_exceptions = False
for id_, input_ in task_source.items():
if len(task_source) > 1:
assert isinstance(args.output,
str) and args.output.endswith('.wav')
output = args.output.replace('.wav', f'_{id_}.wav')
else:
output = args.output
try:
res = self(
text=input_,
# acoustic model related
am=am,
am_config=am_config,
am_ckpt=am_ckpt,
am_stat=am_stat,
phones_dict=phones_dict,
tones_dict=tones_dict,
speaker_dict=speaker_dict,
spk_id=spk_id,
# vocoder related
voc=voc,
voc_config=voc_config,
voc_ckpt=voc_ckpt,
voc_stat=voc_stat,
# other
lang=lang,
device=device,
output=output)
task_results[id_] = res
except Exception as e:
has_exceptions = True
task_results[id_] = f'{e.__class__.__name__}: {e}'
self.process_task_results(args.input, task_results,
args.job_dump_result)
if has_exceptions:
3 years ago
return False
else:
return True
3 years ago
@stats_wrapper
3 years ago
def __call__(self,
text: str,
am: str='fastspeech2_csmsc',
am_config: Optional[os.PathLike]=None,
am_ckpt: Optional[os.PathLike]=None,
am_stat: Optional[os.PathLike]=None,
spk_id: int=0,
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None,
speaker_dict: Optional[os.PathLike]=None,
voc: str='pwgan_csmsc',
voc_config: Optional[os.PathLike]=None,
voc_ckpt: Optional[os.PathLike]=None,
voc_stat: Optional[os.PathLike]=None,
lang: str='zh',
device: str=paddle.get_device(),
3 years ago
output: str='output.wav'):
"""
Python API to call an executor.
"""
paddle.set_device(device)
self._init_from_path(
am=am,
am_config=am_config,
am_ckpt=am_ckpt,
am_stat=am_stat,
phones_dict=phones_dict,
tones_dict=tones_dict,
speaker_dict=speaker_dict,
voc=voc,
voc_config=voc_config,
voc_ckpt=voc_ckpt,
voc_stat=voc_stat,
lang=lang)
self.infer(text=text, lang=lang, am=am, spk_id=spk_id)
res = self.postprocess(output=output)
return res