E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
|
|
|
|
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
|
|
|
|
class TestDeepSpeech2Model(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
paddle.set_device('cpu')
|
|
|
|
|
|
|
|
self.batch_size = 2
|
|
|
|
self.feat_dim = 161
|
|
|
|
max_len = 64
|
|
|
|
|
|
|
|
# (B, T, D)
|
|
|
|
audio = np.random.randn(self.batch_size, max_len, self.feat_dim)
|
|
|
|
audio_len = np.random.randint(max_len, size=self.batch_size)
|
|
|
|
audio_len[-1] = max_len
|
|
|
|
# (B, U)
|
|
|
|
text = np.array([[1, 2], [1, 2]])
|
|
|
|
text_len = np.array([2] * self.batch_size)
|
|
|
|
|
|
|
|
self.audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
|
self.audio_len = paddle.to_tensor(audio_len, dtype='int64')
|
|
|
|
self.text = paddle.to_tensor(text, dtype='int32')
|
|
|
|
self.text_len = paddle.to_tensor(text_len, dtype='int64')
|
|
|
|
|
|
|
|
def test_ds2_1(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
use_gru=False,
|
|
|
|
share_rnn_weights=False, )
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_2(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
use_gru=True,
|
|
|
|
share_rnn_weights=False, )
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_3(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
use_gru=False,
|
|
|
|
share_rnn_weights=True, )
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_4(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
use_gru=True,
|
|
|
|
share_rnn_weights=True, )
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
def test_ds2_5(self):
|
|
|
|
model = DeepSpeech2Model(
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
dict_size=10,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=1024,
|
|
|
|
use_gru=False,
|
|
|
|
share_rnn_weights=False, )
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|