You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/datasets/get_feats.py

266 lines
8.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
3 years ago
# Modified from espnet(https://github.com/espnet/espnet)
import librosa
import numpy as np
import pyworld
from scipy.interpolate import interp1d
class LogMelFBank():
def __init__(self,
sr: int=24000,
n_fft: int=2048,
hop_length: int=300,
win_length: int=None,
window: str="hann",
n_mels: int=80,
fmin: int=80,
fmax: int=7600):
self.sr = sr
# stft
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.window = window
self.center = True
self.pad_mode = "reflect"
# mel
self.n_mels = n_mels
self.fmin = 0 if fmin is None else fmin
self.fmax = sr / 2 if fmax is None else fmax
self.mel_filter = self._create_mel_filter()
def _create_mel_filter(self):
mel_filter = librosa.filters.mel(
sr=self.sr,
n_fft=self.n_fft,
n_mels=self.n_mels,
fmin=self.fmin,
fmax=self.fmax)
return mel_filter
def _stft(self, wav: np.ndarray):
D = librosa.core.stft(
wav,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=self.center,
pad_mode=self.pad_mode)
return D
def _spectrogram(self, wav: np.ndarray):
D = self._stft(wav)
return np.abs(D)
def _mel_spectrogram(self, wav: np.ndarray):
S = self._spectrogram(wav)
mel = np.dot(self.mel_filter, S)
return mel
# We use different definition for log-spec between TTS and ASR
# TTS: log_10(abs(stft))
# ASR: log_e(power(stft))
def get_log_mel_fbank(self, wav, base='10'):
mel = self._mel_spectrogram(wav)
mel = np.clip(mel, a_min=1e-10, a_max=float("inf"))
if base == '10':
mel = np.log10(mel.T)
elif base == 'e':
mel = np.log(mel.T)
# (num_frames, n_mels)
return mel
class Pitch():
def __init__(self,
sr: int=24000,
hop_length: int=300,
f0min: int=80,
f0max: int=7600):
self.sr = sr
self.hop_length = hop_length
self.f0min = f0min
self.f0max = f0max
def _convert_to_continuous_f0(self, f0: np.ndarray) -> np.ndarray:
if (f0 == 0).all():
print("All frames seems to be unvoiced.")
return f0
# padding start and end of f0 sequence
start_f0 = f0[f0 != 0][0]
end_f0 = f0[f0 != 0][-1]
start_idx = np.where(f0 == start_f0)[0][0]
end_idx = np.where(f0 == end_f0)[0][-1]
f0[:start_idx] = start_f0
f0[end_idx:] = end_f0
# get non-zero frame index
nonzero_idxs = np.where(f0 != 0)[0]
# perform linear interpolation
interp_fn = interp1d(nonzero_idxs, f0[nonzero_idxs])
f0 = interp_fn(np.arange(0, f0.shape[0]))
return f0
def _calculate_f0(self,
input: np.ndarray,
use_continuous_f0: bool=True,
use_log_f0: bool=True) -> np.ndarray:
input = input.astype(np.float)
frame_period = 1000 * self.hop_length / self.sr
f0, timeaxis = pyworld.dio(
input,
fs=self.sr,
f0_floor=self.f0min,
f0_ceil=self.f0max,
frame_period=frame_period)
f0 = pyworld.stonemask(input, f0, timeaxis, self.sr)
if use_continuous_f0:
f0 = self._convert_to_continuous_f0(f0)
if use_log_f0:
nonzero_idxs = np.where(f0 != 0)[0]
f0[nonzero_idxs] = np.log(f0[nonzero_idxs])
return f0.reshape(-1)
def _average_by_duration(self, input: np.ndarray,
d: np.ndarray) -> np.ndarray:
d_cumsum = np.pad(d.cumsum(0), (1, 0), 'constant')
arr_list = []
for start, end in zip(d_cumsum[:-1], d_cumsum[1:]):
arr = input[start:end]
mask = arr == 0
arr[mask] = 0
avg_arr = np.mean(arr, axis=0) if len(arr) != 0 else np.array(0)
arr_list.append(avg_arr)
# shape (T,1)
arr_list = np.expand_dims(np.array(arr_list), 0).T
return arr_list
def get_pitch(self,
wav: np.ndarray,
use_continuous_f0: bool=True,
use_log_f0: bool=True,
use_token_averaged_f0: bool=True,
duration: np.ndarray=None):
f0 = self._calculate_f0(wav, use_continuous_f0, use_log_f0)
if use_token_averaged_f0 and duration is not None:
f0 = self._average_by_duration(f0, duration)
return f0
class Energy():
def __init__(self,
n_fft: int=2048,
hop_length: int=300,
win_length: int=None,
window: str="hann",
center: bool=True,
pad_mode: str="reflect"):
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.window = window
self.center = center
self.pad_mode = pad_mode
def _stft(self, wav: np.ndarray):
D = librosa.core.stft(
wav,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=self.center,
pad_mode=self.pad_mode)
return D
def _calculate_energy(self, input: np.ndarray):
input = input.astype(np.float32)
input_stft = self._stft(input)
input_power = np.abs(input_stft)**2
energy = np.sqrt(
np.clip(
np.sum(input_power, axis=0), a_min=1.0e-10, a_max=float('inf')))
return energy
def _average_by_duration(self, input: np.ndarray,
d: np.ndarray) -> np.ndarray:
d_cumsum = np.pad(d.cumsum(0), (1, 0), 'constant')
arr_list = []
for start, end in zip(d_cumsum[:-1], d_cumsum[1:]):
arr = input[start:end]
avg_arr = np.mean(arr, axis=0) if len(arr) != 0 else np.array(0)
arr_list.append(avg_arr)
# shape (T,1)
arr_list = np.expand_dims(np.array(arr_list), 0).T
return arr_list
def get_energy(self,
wav: np.ndarray,
use_token_averaged_energy: bool=True,
duration: np.ndarray=None):
energy = self._calculate_energy(wav)
if use_token_averaged_energy and duration is not None:
energy = self._average_by_duration(energy, duration)
return energy
class LinearSpectrogram():
def __init__(
self,
n_fft: int=1024,
win_length: int=None,
hop_length: int=256,
window: str="hann",
center: bool=True, ):
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.center = center
self.n_fft = n_fft
self.pad_mode = "reflect"
def _stft(self, wav: np.ndarray):
D = librosa.core.stft(
wav,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=self.center,
pad_mode=self.pad_mode)
return D
def _spectrogram(self, wav: np.ndarray):
D = self._stft(wav)
return np.abs(D)
def get_linear_spectrogram(self, wav: np.ndarray):
linear_spectrogram = self._spectrogram(wav)
linear_spectrogram = np.clip(
linear_spectrogram, a_min=1e-10, a_max=float("inf"))
return linear_spectrogram.T