You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/datasets/vocoder_batch_fn.py

221 lines
8.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddlespeech.t2s.audio.codec import encode_mu_law
from paddlespeech.t2s.audio.codec import float_2_label
from paddlespeech.t2s.audio.codec import label_2_float
class Clip(object):
"""Collate functor for training vocoders.
"""
def __init__(
self,
batch_max_steps=20480,
hop_size=256,
aux_context_window=0, ):
"""Initialize customized collater for DataLoader.
Args:
batch_max_steps (int): The maximum length of input signal in batch.
hop_size (int): Hop size of auxiliary features.
aux_context_window (int): Context window size for auxiliary feature conv.
"""
if batch_max_steps % hop_size != 0:
batch_max_steps += -(batch_max_steps % hop_size)
assert batch_max_steps % hop_size == 0
self.batch_max_steps = batch_max_steps
self.batch_max_frames = batch_max_steps // hop_size
self.hop_size = hop_size
self.aux_context_window = aux_context_window
# set useful values in random cutting
self.start_offset = aux_context_window
self.end_offset = -(self.batch_max_frames + aux_context_window)
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
def __call__(self, batch):
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns:
Tensor:
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Tensor:
Target signal batch (B, 1, T).
"""
# check length
batch = [
self._adjust_length(b['wave'], b['feats']) for b in batch
if b['feats'].shape[0] > self.mel_threshold
]
xs, cs = [b[0] for b in batch], [b[1] for b in batch]
# make batch with random cut
c_lengths = [c.shape[0] for c in cs]
start_frames = np.array([
np.random.randint(self.start_offset, cl + self.end_offset)
for cl in c_lengths
])
x_starts = start_frames * self.hop_size
x_ends = x_starts + self.batch_max_steps
c_starts = start_frames - self.aux_context_window
c_ends = start_frames + self.batch_max_frames + self.aux_context_window
y_batch = np.stack(
[x[start:end] for x, start, end in zip(xs, x_starts, x_ends)])
c_batch = np.stack(
[c[start:end] for c, start, end in zip(cs, c_starts, c_ends)])
# convert each batch to tensor, assume that each item in batch has the same length
y_batch = paddle.to_tensor(
y_batch, dtype=paddle.float32).unsqueeze(1) # (B, 1, T)
c_batch = paddle.to_tensor(
c_batch, dtype=paddle.float32).transpose([0, 2, 1]) # (B, C, T')
return y_batch, c_batch
def _adjust_length(self, x, c):
"""Adjust the audio and feature lengths.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) < c.shape[0] * self.hop_size:
x = np.pad(x, (0, c.shape[0] * self.hop_size - len(x)), mode="edge")
elif len(x) > c.shape[0] * self.hop_size:
# print(
# f"wave length: ({len(x)}), mel length: ({c.shape[0]}), hop size: ({self.hop_size })"
# )
x = x[:c.shape[0] * self.hop_size]
# check the legnth is valid
assert len(x) == c.shape[
0] * self.hop_size, f"wave length: ({len(x)}), mel length: ({c.shape[0]})"
return x, c
class WaveRNNClip(Clip):
def __init__(self,
mode: str='RAW',
batch_max_steps: int=4500,
hop_size: int=300,
aux_context_window: int=2,
bits: int=9,
mu_law: bool=True):
self.mode = mode
self.mel_win = batch_max_steps // hop_size + 2 * aux_context_window
self.batch_max_steps = batch_max_steps
self.hop_size = hop_size
self.aux_context_window = aux_context_window
self.mu_law = mu_law
self.batch_max_frames = batch_max_steps // hop_size
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
if self.mode == 'MOL':
self.bits = 16
else:
self.bits = bits
def to_quant(self, wav):
if self.mode == 'RAW':
if self.mu_law:
quant = encode_mu_law(wav, mu=2**self.bits)
else:
quant = float_2_label(wav, bits=self.bits)
elif self.mode == 'MOL':
quant = float_2_label(wav, bits=16)
quant = quant.astype(np.int64)
return quant
def __call__(self, batch):
# voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length
# max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns:
Tensor: Input signal batch (B, 1, T).
Tensor: Target signal batch (B, 1, T).
Tensor: Auxiliary feature batch (B, C, T'),
where T = (T' - 2 * aux_context_window) * hop_size.
"""
# check length
batch = [
self._adjust_length(b['wave'], b['feats']) for b in batch
if b['feats'].shape[0] > self.mel_threshold
]
wav, mel = [b[0] for b in batch], [b[1] for b in batch]
# mel 此处需要转置
mel = [x.T for x in mel]
max_offsets = [
x.shape[-1] - 2 - (self.mel_win + 2 * self.aux_context_window)
for x in mel
]
# the slice point of mel selecting randomly
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
# the slice point of wav selecting randomly, which is behind 2(=pad) frames
sig_offsets = [(offset + self.aux_context_window) * self.hop_size
for offset in mel_offsets]
# mels.shape[1] = voc_seq_len // hop_length + 2 * voc_pad
mels = [
x[:, mel_offsets[i]:mel_offsets[i] + self.mel_win]
for i, x in enumerate(mel)
]
# label.shape[1] = voc_seq_len + 1
wav = [self.to_quant(x) for x in wav]
labels = [
x[sig_offsets[i]:sig_offsets[i] + self.batch_max_steps + 1]
for i, x in enumerate(wav)
]
mels = np.stack(mels).astype(np.float32)
labels = np.stack(labels).astype(np.int64)
mels = paddle.to_tensor(mels)
labels = paddle.to_tensor(labels, dtype='int64')
# x is input, y is label
x = labels[:, :self.batch_max_steps]
y = labels[:, 1:]
'''
mode = RAW:
mu_law = True:
quant: bits = 9 0, 1, 2, ..., 509, 510, 511 int
mu_law = False
quant bits = 9 [0 511] float
mode = MOL:
quant: bits = 16 [0. 65536] float
'''
# x should be normalizes in.[0, 1] in RAW mode
x = label_2_float(paddle.cast(x, dtype='float32'), self.bits)
# y should be normalizes in.[0, 1] in MOL mode
if self.mode == 'MOL':
y = label_2_float(paddle.cast(y, dtype='float32'), self.bits)
return x, y, mels