You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
983 lines
33 KiB
983 lines
33 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from paddle.fluid.layers import sequence_mask
|
||
|
from paddle.nn import functional as F
|
||
|
from paddle.nn import initializer as I
|
||
|
from tqdm import trange
|
||
|
|
||
3 years ago
|
from paddlespeech.t2s.modules.attention import LocationSensitiveAttention
|
||
|
from paddlespeech.t2s.modules.conv import Conv1dBatchNorm
|
||
|
from paddlespeech.t2s.modules.losses import guided_attention_loss
|
||
|
from paddlespeech.t2s.utils import checkpoint
|
||
3 years ago
|
|
||
|
__all__ = ["Tacotron2", "Tacotron2Loss"]
|
||
|
|
||
|
|
||
|
class DecoderPreNet(nn.Layer):
|
||
|
"""Decoder prenet module for Tacotron2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d_input: int
|
||
|
The input feature size.
|
||
|
|
||
|
d_hidden: int
|
||
|
The hidden size.
|
||
|
|
||
|
d_output: int
|
||
|
The output feature size.
|
||
|
|
||
|
dropout_rate: float
|
||
|
The droput probability.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
d_input: int,
|
||
|
d_hidden: int,
|
||
|
d_output: int,
|
||
|
dropout_rate: float):
|
||
|
super().__init__()
|
||
|
|
||
|
self.dropout_rate = dropout_rate
|
||
|
self.linear1 = nn.Linear(d_input, d_hidden, bias_attr=False)
|
||
|
self.linear2 = nn.Linear(d_hidden, d_output, bias_attr=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Calculate forward propagation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: Tensor [shape=(B, T_mel, C)]
|
||
|
Batch of the sequences of padded mel spectrogram.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output: Tensor [shape=(B, T_mel, C)]
|
||
|
Batch of the sequences of padded hidden state.
|
||
|
|
||
|
"""
|
||
|
|
||
|
x = F.dropout(F.relu(self.linear1(x)), self.dropout_rate, training=True)
|
||
|
output = F.dropout(
|
||
|
F.relu(self.linear2(x)), self.dropout_rate, training=True)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class DecoderPostNet(nn.Layer):
|
||
|
"""Decoder postnet module for Tacotron2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d_mels: int
|
||
|
The number of mel bands.
|
||
|
|
||
|
d_hidden: int
|
||
|
The hidden size of postnet.
|
||
|
|
||
|
kernel_size: int
|
||
|
The kernel size of the conv layer in postnet.
|
||
|
|
||
|
num_layers: int
|
||
|
The number of conv layers in postnet.
|
||
|
|
||
|
dropout: float
|
||
|
The droput probability.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
d_mels: int,
|
||
|
d_hidden: int,
|
||
|
kernel_size: int,
|
||
|
num_layers: int,
|
||
|
dropout: float):
|
||
|
super().__init__()
|
||
|
self.dropout = dropout
|
||
|
self.num_layers = num_layers
|
||
|
|
||
|
padding = int((kernel_size - 1) / 2)
|
||
|
|
||
|
self.conv_batchnorms = nn.LayerList()
|
||
|
k = math.sqrt(1.0 / (d_mels * kernel_size))
|
||
|
self.conv_batchnorms.append(
|
||
|
Conv1dBatchNorm(
|
||
|
d_mels,
|
||
|
d_hidden,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=padding,
|
||
|
bias_attr=I.Uniform(-k, k),
|
||
|
data_format='NLC'))
|
||
|
|
||
|
k = math.sqrt(1.0 / (d_hidden * kernel_size))
|
||
|
self.conv_batchnorms.extend([
|
||
|
Conv1dBatchNorm(
|
||
|
d_hidden,
|
||
|
d_hidden,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=padding,
|
||
|
bias_attr=I.Uniform(-k, k),
|
||
|
data_format='NLC') for i in range(1, num_layers - 1)
|
||
|
])
|
||
|
|
||
|
self.conv_batchnorms.append(
|
||
|
Conv1dBatchNorm(
|
||
|
d_hidden,
|
||
|
d_mels,
|
||
|
kernel_size=kernel_size,
|
||
|
padding=padding,
|
||
|
bias_attr=I.Uniform(-k, k),
|
||
|
data_format='NLC'))
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Calculate forward propagation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: Tensor [shape=(B, T_mel, C)]
|
||
|
Output sequence of features from decoder.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output: Tensor [shape=(B, T_mel, C)]
|
||
|
Output sequence of features after postnet.
|
||
|
|
||
|
"""
|
||
|
|
||
|
for i in range(len(self.conv_batchnorms) - 1):
|
||
|
x = F.dropout(
|
||
|
F.tanh(self.conv_batchnorms[i](x)),
|
||
|
self.dropout,
|
||
|
training=self.training)
|
||
|
output = F.dropout(
|
||
|
self.conv_batchnorms[self.num_layers - 1](x),
|
||
|
self.dropout,
|
||
|
training=self.training)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class Tacotron2Encoder(nn.Layer):
|
||
|
"""Tacotron2 encoder module for Tacotron2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d_hidden: int
|
||
|
The hidden size in encoder module.
|
||
|
|
||
|
conv_layers: int
|
||
|
The number of conv layers.
|
||
|
|
||
|
kernel_size: int
|
||
|
The kernel size of conv layers.
|
||
|
|
||
|
p_dropout: float
|
||
|
The droput probability.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
d_hidden: int,
|
||
|
conv_layers: int,
|
||
|
kernel_size: int,
|
||
|
p_dropout: float):
|
||
|
super().__init__()
|
||
|
|
||
|
k = math.sqrt(1.0 / (d_hidden * kernel_size))
|
||
|
self.conv_batchnorms = paddle.nn.LayerList([
|
||
|
Conv1dBatchNorm(
|
||
|
d_hidden,
|
||
|
d_hidden,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=int((kernel_size - 1) / 2),
|
||
|
bias_attr=I.Uniform(-k, k),
|
||
|
data_format='NLC') for i in range(conv_layers)
|
||
|
])
|
||
|
self.p_dropout = p_dropout
|
||
|
|
||
|
self.hidden_size = int(d_hidden / 2)
|
||
|
self.lstm = nn.LSTM(
|
||
|
d_hidden, self.hidden_size, direction="bidirectional")
|
||
|
|
||
|
def forward(self, x, input_lens=None):
|
||
|
"""Calculate forward propagation of tacotron2 encoder.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: Tensor [shape=(B, T, C)]
|
||
|
Input embeddings.
|
||
|
|
||
|
text_lens: Tensor [shape=(B,)], optional
|
||
|
Batch of lengths of each text input batch. Defaults to None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : Tensor [shape=(B, T, C)]
|
||
|
Batch of the sequences of padded hidden states.
|
||
|
|
||
|
"""
|
||
|
for conv_batchnorm in self.conv_batchnorms:
|
||
|
x = F.dropout(
|
||
|
F.relu(conv_batchnorm(x)),
|
||
|
self.p_dropout,
|
||
|
training=self.training)
|
||
|
|
||
|
output, _ = self.lstm(inputs=x, sequence_length=input_lens)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class Tacotron2Decoder(nn.Layer):
|
||
|
"""Tacotron2 decoder module for Tacotron2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d_mels: int
|
||
|
The number of mel bands.
|
||
|
|
||
|
reduction_factor: int
|
||
|
The reduction factor of tacotron.
|
||
|
|
||
|
d_encoder: int
|
||
|
The hidden size of encoder.
|
||
|
|
||
|
d_prenet: int
|
||
|
The hidden size in decoder prenet.
|
||
|
|
||
|
d_attention_rnn: int
|
||
|
The attention rnn layer hidden size.
|
||
|
|
||
|
d_decoder_rnn: int
|
||
|
The decoder rnn layer hidden size.
|
||
|
|
||
|
d_attention: int
|
||
|
The hidden size of the linear layer in location sensitive attention.
|
||
|
|
||
|
attention_filters: int
|
||
|
The filter size of the conv layer in location sensitive attention.
|
||
|
|
||
|
attention_kernel_size: int
|
||
|
The kernel size of the conv layer in location sensitive attention.
|
||
|
|
||
|
p_prenet_dropout: float
|
||
|
The droput probability in decoder prenet.
|
||
|
|
||
|
p_attention_dropout: float
|
||
|
The droput probability in location sensitive attention.
|
||
|
|
||
|
p_decoder_dropout: float
|
||
|
The droput probability in decoder.
|
||
|
|
||
|
use_stop_token: bool
|
||
|
Whether to use a binary classifier for stop token prediction.
|
||
|
Defaults to False
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
d_mels: int,
|
||
|
reduction_factor: int,
|
||
|
d_encoder: int,
|
||
|
d_prenet: int,
|
||
|
d_attention_rnn: int,
|
||
|
d_decoder_rnn: int,
|
||
|
d_attention: int,
|
||
|
attention_filters: int,
|
||
|
attention_kernel_size: int,
|
||
|
p_prenet_dropout: float,
|
||
|
p_attention_dropout: float,
|
||
|
p_decoder_dropout: float,
|
||
|
use_stop_token: bool=False):
|
||
|
super().__init__()
|
||
|
self.d_mels = d_mels
|
||
|
self.reduction_factor = reduction_factor
|
||
|
self.d_encoder = d_encoder
|
||
|
self.d_attention_rnn = d_attention_rnn
|
||
|
self.d_decoder_rnn = d_decoder_rnn
|
||
|
self.p_attention_dropout = p_attention_dropout
|
||
|
self.p_decoder_dropout = p_decoder_dropout
|
||
|
|
||
|
self.prenet = DecoderPreNet(
|
||
|
d_mels * reduction_factor,
|
||
|
d_prenet,
|
||
|
d_prenet,
|
||
|
dropout_rate=p_prenet_dropout)
|
||
|
|
||
|
# attention_rnn takes attention's context vector has an
|
||
|
# auxiliary input
|
||
|
self.attention_rnn = nn.LSTMCell(d_prenet + d_encoder, d_attention_rnn)
|
||
|
|
||
|
self.attention_layer = LocationSensitiveAttention(
|
||
|
d_attention_rnn, d_encoder, d_attention, attention_filters,
|
||
|
attention_kernel_size)
|
||
|
|
||
|
# decoder_rnn takes prenet's output and attention_rnn's input
|
||
|
# as input
|
||
|
self.decoder_rnn = nn.LSTMCell(d_attention_rnn + d_encoder,
|
||
|
d_decoder_rnn)
|
||
|
self.linear_projection = nn.Linear(d_decoder_rnn + d_encoder,
|
||
|
d_mels * reduction_factor)
|
||
|
|
||
|
self.use_stop_token = use_stop_token
|
||
|
if use_stop_token:
|
||
|
self.stop_layer = nn.Linear(d_decoder_rnn + d_encoder, 1)
|
||
|
|
||
|
# states - temporary attributes
|
||
|
self.attention_hidden = None
|
||
|
self.attention_cell = None
|
||
|
|
||
|
self.decoder_hidden = None
|
||
|
self.decoder_cell = None
|
||
|
|
||
|
self.attention_weights = None
|
||
|
self.attention_weights_cum = None
|
||
|
self.attention_context = None
|
||
|
|
||
|
self.key = None
|
||
|
self.mask = None
|
||
|
self.processed_key = None
|
||
|
|
||
|
def _initialize_decoder_states(self, key):
|
||
|
"""init states be used in decoder
|
||
|
"""
|
||
|
batch_size, encoder_steps, _ = key.shape
|
||
|
|
||
|
self.attention_hidden = paddle.zeros(
|
||
|
shape=[batch_size, self.d_attention_rnn], dtype=key.dtype)
|
||
|
self.attention_cell = paddle.zeros(
|
||
|
shape=[batch_size, self.d_attention_rnn], dtype=key.dtype)
|
||
|
|
||
|
self.decoder_hidden = paddle.zeros(
|
||
|
shape=[batch_size, self.d_decoder_rnn], dtype=key.dtype)
|
||
|
self.decoder_cell = paddle.zeros(
|
||
|
shape=[batch_size, self.d_decoder_rnn], dtype=key.dtype)
|
||
|
|
||
|
self.attention_weights = paddle.zeros(
|
||
|
shape=[batch_size, encoder_steps], dtype=key.dtype)
|
||
|
self.attention_weights_cum = paddle.zeros(
|
||
|
shape=[batch_size, encoder_steps], dtype=key.dtype)
|
||
|
self.attention_context = paddle.zeros(
|
||
|
shape=[batch_size, self.d_encoder], dtype=key.dtype)
|
||
|
|
||
|
self.key = key # [B, T, C]
|
||
|
# pre-compute projected keys to improve efficiency
|
||
|
self.processed_key = self.attention_layer.key_layer(key) # [B, T, C]
|
||
|
|
||
|
def _decode(self, query):
|
||
|
"""decode one time step
|
||
|
"""
|
||
|
cell_input = paddle.concat([query, self.attention_context], axis=-1)
|
||
|
|
||
|
# The first lstm layer (or spec encoder lstm)
|
||
|
_, (self.attention_hidden, self.attention_cell) = self.attention_rnn(
|
||
|
cell_input, (self.attention_hidden, self.attention_cell))
|
||
|
self.attention_hidden = F.dropout(
|
||
|
self.attention_hidden,
|
||
|
self.p_attention_dropout,
|
||
|
training=self.training)
|
||
|
|
||
|
# Loaction sensitive attention
|
||
|
attention_weights_cat = paddle.stack(
|
||
|
[self.attention_weights, self.attention_weights_cum], axis=-1)
|
||
|
self.attention_context, self.attention_weights = self.attention_layer(
|
||
|
self.attention_hidden, self.processed_key, self.key,
|
||
|
attention_weights_cat, self.mask)
|
||
|
self.attention_weights_cum += self.attention_weights
|
||
|
|
||
|
# The second lstm layer (or spec decoder lstm)
|
||
|
decoder_input = paddle.concat(
|
||
|
[self.attention_hidden, self.attention_context], axis=-1)
|
||
|
_, (self.decoder_hidden, self.decoder_cell) = self.decoder_rnn(
|
||
|
decoder_input, (self.decoder_hidden, self.decoder_cell))
|
||
|
self.decoder_hidden = F.dropout(
|
||
|
self.decoder_hidden,
|
||
|
p=self.p_decoder_dropout,
|
||
|
training=self.training)
|
||
|
|
||
|
# decode output one step
|
||
|
decoder_hidden_attention_context = paddle.concat(
|
||
|
[self.decoder_hidden, self.attention_context], axis=-1)
|
||
|
decoder_output = self.linear_projection(
|
||
|
decoder_hidden_attention_context)
|
||
|
if self.use_stop_token:
|
||
|
stop_logit = self.stop_layer(decoder_hidden_attention_context)
|
||
|
return decoder_output, self.attention_weights, stop_logit
|
||
|
return decoder_output, self.attention_weights
|
||
|
|
||
|
def forward(self, keys, querys, mask):
|
||
|
"""Calculate forward propagation of tacotron2 decoder.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
keys: Tensor[shape=(B, T_key, C)]
|
||
|
Batch of the sequences of padded output from encoder.
|
||
|
|
||
|
querys: Tensor[shape(B, T_query, C)]
|
||
|
Batch of the sequences of padded mel spectrogram.
|
||
|
|
||
|
mask: Tensor
|
||
|
Mask generated with text length. Shape should be (B, T_key, 1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mel_output: Tensor [shape=(B, T_query, C)]
|
||
|
Output sequence of features.
|
||
|
|
||
|
alignments: Tensor [shape=(B, T_query, T_key)]
|
||
|
Attention weights.
|
||
|
"""
|
||
|
self._initialize_decoder_states(keys)
|
||
|
self.mask = mask
|
||
|
|
||
|
querys = paddle.reshape(
|
||
|
querys,
|
||
|
[querys.shape[0], querys.shape[1] // self.reduction_factor, -1])
|
||
|
start_step = paddle.zeros(
|
||
|
shape=[querys.shape[0], 1, querys.shape[-1]], dtype=querys.dtype)
|
||
|
querys = paddle.concat([start_step, querys], axis=1)
|
||
|
|
||
|
querys = self.prenet(querys)
|
||
|
|
||
|
mel_outputs, alignments = [], []
|
||
|
stop_logits = []
|
||
|
# Ignore the last time step
|
||
|
while len(mel_outputs) < querys.shape[1] - 1:
|
||
|
query = querys[:, len(mel_outputs), :]
|
||
|
if self.use_stop_token:
|
||
|
mel_output, attention_weights, stop_logit = self._decode(query)
|
||
|
else:
|
||
|
mel_output, attention_weights = self._decode(query)
|
||
|
mel_outputs.append(mel_output)
|
||
|
alignments.append(attention_weights)
|
||
|
if self.use_stop_token:
|
||
|
stop_logits.append(stop_logit)
|
||
|
|
||
|
alignments = paddle.stack(alignments, axis=1)
|
||
|
mel_outputs = paddle.stack(mel_outputs, axis=1)
|
||
|
if self.use_stop_token:
|
||
|
stop_logits = paddle.concat(stop_logits, axis=1)
|
||
|
return mel_outputs, alignments, stop_logits
|
||
|
return mel_outputs, alignments
|
||
|
|
||
|
def infer(self, key, max_decoder_steps=1000):
|
||
|
"""Calculate forward propagation of tacotron2 decoder.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
keys: Tensor [shape=(B, T_key, C)]
|
||
|
Batch of the sequences of padded output from encoder.
|
||
|
|
||
|
max_decoder_steps: int, optional
|
||
|
Number of max step when synthesize. Defaults to 1000.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mel_output: Tensor [shape=(B, T_mel, C)]
|
||
|
Output sequence of features.
|
||
|
|
||
|
alignments: Tensor [shape=(B, T_mel, T_key)]
|
||
|
Attention weights.
|
||
|
|
||
|
"""
|
||
|
self._initialize_decoder_states(key)
|
||
|
self.mask = None # mask is not needed for single instance inference
|
||
|
encoder_steps = key.shape[1]
|
||
|
|
||
|
# [B, C]
|
||
|
start_step = paddle.zeros(
|
||
|
shape=[key.shape[0], self.d_mels * self.reduction_factor],
|
||
|
dtype=key.dtype)
|
||
|
query = start_step # [B, C]
|
||
|
first_hit_end = None
|
||
|
|
||
|
mel_outputs, alignments = [], []
|
||
|
stop_logits = []
|
||
|
for i in trange(max_decoder_steps):
|
||
|
query = self.prenet(query)
|
||
|
if self.use_stop_token:
|
||
|
mel_output, alignment, stop_logit = self._decode(query)
|
||
|
else:
|
||
|
mel_output, alignment = self._decode(query)
|
||
|
|
||
|
mel_outputs.append(mel_output)
|
||
|
alignments.append(alignment) # (B=1, T)
|
||
|
if self.use_stop_token:
|
||
|
stop_logits.append(stop_logit)
|
||
|
|
||
|
if self.use_stop_token:
|
||
|
if F.sigmoid(stop_logit) > 0.5:
|
||
|
print("hit stop condition!")
|
||
|
break
|
||
|
else:
|
||
|
if int(paddle.argmax(alignment[0])) == encoder_steps - 1:
|
||
|
if first_hit_end is None:
|
||
|
first_hit_end = i
|
||
|
elif i > (first_hit_end + 20):
|
||
|
print("content exhausted!")
|
||
|
break
|
||
|
if len(mel_outputs) == max_decoder_steps:
|
||
|
print("Warning! Reached max decoder steps!!!")
|
||
|
break
|
||
|
|
||
|
query = mel_output
|
||
|
|
||
|
alignments = paddle.stack(alignments, axis=1)
|
||
|
mel_outputs = paddle.stack(mel_outputs, axis=1)
|
||
|
if self.use_stop_token:
|
||
|
stop_logits = paddle.concat(stop_logits, axis=1)
|
||
|
return mel_outputs, alignments, stop_logits
|
||
|
return mel_outputs, alignments
|
||
|
|
||
|
|
||
|
class Tacotron2(nn.Layer):
|
||
|
"""Tacotron2 model for end-to-end text-to-speech (E2E-TTS).
|
||
|
|
||
|
This is a model of Spectrogram prediction network in Tacotron2 described
|
||
|
in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram
|
||
|
Predictions <https://arxiv.org/abs/1712.05884>`_,
|
||
|
which converts the sequence of characters
|
||
|
into the sequence of mel spectrogram.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vocab_size : int
|
||
|
Vocabulary size of phons of the model.
|
||
|
|
||
|
n_tones: int
|
||
|
Vocabulary size of tones of the model. Defaults to None. If provided,
|
||
|
the model has an extra tone embedding.
|
||
|
|
||
|
d_mels: int
|
||
|
Number of mel bands.
|
||
|
|
||
|
d_encoder: int
|
||
|
Hidden size in encoder module.
|
||
|
|
||
|
encoder_conv_layers: int
|
||
|
Number of conv layers in encoder.
|
||
|
|
||
|
encoder_kernel_size: int
|
||
|
Kernel size of conv layers in encoder.
|
||
|
|
||
|
d_prenet: int
|
||
|
Hidden size in decoder prenet.
|
||
|
|
||
|
d_attention_rnn: int
|
||
|
Attention rnn layer hidden size in decoder.
|
||
|
|
||
|
d_decoder_rnn: int
|
||
|
Decoder rnn layer hidden size in decoder.
|
||
|
|
||
|
attention_filters: int
|
||
|
Filter size of the conv layer in location sensitive attention.
|
||
|
|
||
|
attention_kernel_size: int
|
||
|
Kernel size of the conv layer in location sensitive attention.
|
||
|
|
||
|
d_attention: int
|
||
|
Hidden size of the linear layer in location sensitive attention.
|
||
|
|
||
|
d_postnet: int
|
||
|
Hidden size of postnet.
|
||
|
|
||
|
postnet_kernel_size: int
|
||
|
Kernel size of the conv layer in postnet.
|
||
|
|
||
|
postnet_conv_layers: int
|
||
|
Number of conv layers in postnet.
|
||
|
|
||
|
reduction_factor: int
|
||
|
Reduction factor of tacotron2.
|
||
|
|
||
|
p_encoder_dropout: float
|
||
|
Droput probability in encoder.
|
||
|
|
||
|
p_prenet_dropout: float
|
||
|
Droput probability in decoder prenet.
|
||
|
|
||
|
p_attention_dropout: float
|
||
|
Droput probability in location sensitive attention.
|
||
|
|
||
|
p_decoder_dropout: float
|
||
|
Droput probability in decoder.
|
||
|
|
||
|
p_postnet_dropout: float
|
||
|
Droput probability in postnet.
|
||
|
|
||
|
d_global_condition: int
|
||
|
Feature size of global condition. Defaults to None. If provided, The
|
||
|
model assumes a global condition that is concatenated to the encoder
|
||
|
outputs.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
vocab_size,
|
||
|
n_tones=None,
|
||
|
d_mels: int=80,
|
||
|
d_encoder: int=512,
|
||
|
encoder_conv_layers: int=3,
|
||
|
encoder_kernel_size: int=5,
|
||
|
d_prenet: int=256,
|
||
|
d_attention_rnn: int=1024,
|
||
|
d_decoder_rnn: int=1024,
|
||
|
attention_filters: int=32,
|
||
|
attention_kernel_size: int=31,
|
||
|
d_attention: int=128,
|
||
|
d_postnet: int=512,
|
||
|
postnet_kernel_size: int=5,
|
||
|
postnet_conv_layers: int=5,
|
||
|
reduction_factor: int=1,
|
||
|
p_encoder_dropout: float=0.5,
|
||
|
p_prenet_dropout: float=0.5,
|
||
|
p_attention_dropout: float=0.1,
|
||
|
p_decoder_dropout: float=0.1,
|
||
|
p_postnet_dropout: float=0.5,
|
||
|
d_global_condition=None,
|
||
|
use_stop_token=False):
|
||
|
super().__init__()
|
||
|
|
||
|
std = math.sqrt(2.0 / (vocab_size + d_encoder))
|
||
|
val = math.sqrt(3.0) * std # uniform bounds for std
|
||
|
self.embedding = nn.Embedding(
|
||
|
vocab_size, d_encoder, weight_attr=I.Uniform(-val, val))
|
||
|
if n_tones:
|
||
|
self.embedding_tones = nn.Embedding(
|
||
|
n_tones,
|
||
|
d_encoder,
|
||
|
padding_idx=0,
|
||
|
weight_attr=I.Uniform(-0.1 * val, 0.1 * val))
|
||
|
self.toned = n_tones is not None
|
||
|
|
||
|
self.encoder = Tacotron2Encoder(d_encoder, encoder_conv_layers,
|
||
|
encoder_kernel_size, p_encoder_dropout)
|
||
|
|
||
|
# input augmentation scheme: concat global condition to the encoder output
|
||
|
if d_global_condition is not None:
|
||
|
d_encoder += d_global_condition
|
||
|
self.decoder = Tacotron2Decoder(
|
||
|
d_mels,
|
||
|
reduction_factor,
|
||
|
d_encoder,
|
||
|
d_prenet,
|
||
|
d_attention_rnn,
|
||
|
d_decoder_rnn,
|
||
|
d_attention,
|
||
|
attention_filters,
|
||
|
attention_kernel_size,
|
||
|
p_prenet_dropout,
|
||
|
p_attention_dropout,
|
||
|
p_decoder_dropout,
|
||
|
use_stop_token=use_stop_token)
|
||
|
self.postnet = DecoderPostNet(
|
||
|
d_mels=d_mels * reduction_factor,
|
||
|
d_hidden=d_postnet,
|
||
|
kernel_size=postnet_kernel_size,
|
||
|
num_layers=postnet_conv_layers,
|
||
|
dropout=p_postnet_dropout)
|
||
|
|
||
|
def forward(self,
|
||
|
text_inputs,
|
||
|
text_lens,
|
||
|
mels,
|
||
|
output_lens=None,
|
||
|
tones=None,
|
||
|
global_condition=None):
|
||
|
"""Calculate forward propagation of tacotron2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
text_inputs: Tensor [shape=(B, T_text)]
|
||
|
Batch of the sequencees of padded character ids.
|
||
|
|
||
|
text_lens: Tensor [shape=(B,)]
|
||
|
Batch of lengths of each text input batch.
|
||
|
|
||
|
mels: Tensor [shape(B, T_mel, C)]
|
||
|
Batch of the sequences of padded mel spectrogram.
|
||
|
|
||
|
output_lens: Tensor [shape=(B,)], optional
|
||
|
Batch of lengths of each mels batch. Defaults to None.
|
||
|
|
||
|
tones: Tensor [shape=(B, T_text)]
|
||
|
Batch of sequences of padded tone ids.
|
||
|
|
||
|
global_condition: Tensor [shape(B, C)]
|
||
|
Batch of global conditions. Defaults to None. If the
|
||
|
`d_global_condition` of the model is not None, this input should be
|
||
|
provided.
|
||
|
|
||
|
use_stop_token: bool
|
||
|
Whether to include a binary classifier to predict the stop token.
|
||
|
Defaults to False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
outputs : Dict[str, Tensor]
|
||
|
|
||
|
mel_output: output sequence of features (B, T_mel, C);
|
||
|
|
||
|
mel_outputs_postnet: output sequence of features after postnet (B, T_mel, C);
|
||
|
|
||
|
alignments: attention weights (B, T_mel, T_text);
|
||
|
|
||
|
stop_logits: output sequence of stop logits (B, T_mel)
|
||
|
"""
|
||
|
# input of embedding must be int64
|
||
|
text_inputs = paddle.cast(text_inputs, 'int64')
|
||
|
embedded_inputs = self.embedding(text_inputs)
|
||
|
if self.toned:
|
||
|
embedded_inputs += self.embedding_tones(tones)
|
||
|
|
||
|
encoder_outputs = self.encoder(embedded_inputs, text_lens)
|
||
|
|
||
|
if global_condition is not None:
|
||
|
global_condition = global_condition.unsqueeze(1)
|
||
|
global_condition = paddle.expand(global_condition,
|
||
|
[-1, encoder_outputs.shape[1], -1])
|
||
|
encoder_outputs = paddle.concat([encoder_outputs, global_condition],
|
||
|
-1)
|
||
|
|
||
|
# [B, T_enc, 1]
|
||
|
mask = sequence_mask(
|
||
|
text_lens, dtype=encoder_outputs.dtype).unsqueeze(-1)
|
||
|
if self.decoder.use_stop_token:
|
||
|
mel_outputs, alignments, stop_logits = self.decoder(
|
||
|
encoder_outputs, mels, mask=mask)
|
||
|
else:
|
||
|
mel_outputs, alignments = self.decoder(
|
||
|
encoder_outputs, mels, mask=mask)
|
||
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
||
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
||
|
|
||
|
if output_lens is not None:
|
||
|
# [B, T_dec, 1]
|
||
|
mask = sequence_mask(output_lens).unsqueeze(-1)
|
||
|
mel_outputs = mel_outputs * mask # [B, T, C]
|
||
|
mel_outputs_postnet = mel_outputs_postnet * mask # [B, T, C]
|
||
|
outputs = {
|
||
|
"mel_output": mel_outputs,
|
||
|
"mel_outputs_postnet": mel_outputs_postnet,
|
||
|
"alignments": alignments
|
||
|
}
|
||
|
if self.decoder.use_stop_token:
|
||
|
outputs["stop_logits"] = stop_logits
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
@paddle.no_grad()
|
||
|
def infer(self,
|
||
|
text_inputs,
|
||
|
max_decoder_steps=1000,
|
||
|
tones=None,
|
||
|
global_condition=None):
|
||
|
"""Generate the mel sepctrogram of features given the sequences of character ids.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
text_inputs: Tensor [shape=(B, T_text)]
|
||
|
Batch of the sequencees of padded character ids.
|
||
|
|
||
|
max_decoder_steps: int, optional
|
||
|
Number of max step when synthesize. Defaults to 1000.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
outputs : Dict[str, Tensor]
|
||
|
|
||
|
mel_output: output sequence of sepctrogram (B, T_mel, C);
|
||
|
|
||
|
mel_outputs_postnet: output sequence of sepctrogram after postnet (B, T_mel, C);
|
||
|
|
||
|
stop_logits: output sequence of stop logits (B, T_mel);
|
||
|
|
||
|
alignments: attention weights (B, T_mel, T_text). This key is only
|
||
|
present when `use_stop_token` is True.
|
||
|
"""
|
||
|
# input of embedding must be int64
|
||
|
text_inputs = paddle.cast(text_inputs, 'int64')
|
||
|
embedded_inputs = self.embedding(text_inputs)
|
||
|
if self.toned:
|
||
|
embedded_inputs += self.embedding_tones(tones)
|
||
|
encoder_outputs = self.encoder(embedded_inputs)
|
||
|
|
||
|
if global_condition is not None:
|
||
|
global_condition = global_condition.unsqueeze(1)
|
||
|
global_condition = paddle.expand(global_condition,
|
||
|
[-1, encoder_outputs.shape[1], -1])
|
||
|
encoder_outputs = paddle.concat([encoder_outputs, global_condition],
|
||
|
-1)
|
||
|
if self.decoder.use_stop_token:
|
||
|
mel_outputs, alignments, stop_logits = self.decoder.infer(
|
||
|
encoder_outputs, max_decoder_steps=max_decoder_steps)
|
||
|
else:
|
||
|
mel_outputs, alignments = self.decoder.infer(
|
||
|
encoder_outputs, max_decoder_steps=max_decoder_steps)
|
||
|
|
||
|
mel_outputs_postnet = self.postnet(mel_outputs)
|
||
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
|
||
|
|
||
|
outputs = {
|
||
|
"mel_output": mel_outputs,
|
||
|
"mel_outputs_postnet": mel_outputs_postnet,
|
||
|
"alignments": alignments
|
||
|
}
|
||
|
if self.decoder.use_stop_token:
|
||
|
outputs["stop_logits"] = stop_logits
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, config, checkpoint_path):
|
||
|
"""Build a Tacotron2 model from a pretrained model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
config: yacs.config.CfgNode
|
||
|
model configs
|
||
|
|
||
|
checkpoint_path: Path or str
|
||
|
the path of pretrained model checkpoint, without extension name
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ConditionalWaveFlow
|
||
|
The model built from pretrained result.
|
||
|
"""
|
||
|
model = cls(vocab_size=config.model.vocab_size,
|
||
|
n_tones=config.model.n_tones,
|
||
|
d_mels=config.data.n_mels,
|
||
|
d_encoder=config.model.d_encoder,
|
||
|
encoder_conv_layers=config.model.encoder_conv_layers,
|
||
|
encoder_kernel_size=config.model.encoder_kernel_size,
|
||
|
d_prenet=config.model.d_prenet,
|
||
|
d_attention_rnn=config.model.d_attention_rnn,
|
||
|
d_decoder_rnn=config.model.d_decoder_rnn,
|
||
|
attention_filters=config.model.attention_filters,
|
||
|
attention_kernel_size=config.model.attention_kernel_size,
|
||
|
d_attention=config.model.d_attention,
|
||
|
d_postnet=config.model.d_postnet,
|
||
|
postnet_kernel_size=config.model.postnet_kernel_size,
|
||
|
postnet_conv_layers=config.model.postnet_conv_layers,
|
||
|
reduction_factor=config.model.reduction_factor,
|
||
|
p_encoder_dropout=config.model.p_encoder_dropout,
|
||
|
p_prenet_dropout=config.model.p_prenet_dropout,
|
||
|
p_attention_dropout=config.model.p_attention_dropout,
|
||
|
p_decoder_dropout=config.model.p_decoder_dropout,
|
||
|
p_postnet_dropout=config.model.p_postnet_dropout,
|
||
|
d_global_condition=config.model.d_global_condition,
|
||
|
use_stop_token=config.model.use_stop_token)
|
||
|
checkpoint.load_parameters(model, checkpoint_path=checkpoint_path)
|
||
|
return model
|
||
|
|
||
|
|
||
|
class Tacotron2Loss(nn.Layer):
|
||
|
""" Tacotron2 Loss module
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
use_stop_token_loss=True,
|
||
|
use_guided_attention_loss=False,
|
||
|
sigma=0.2):
|
||
|
"""Tacotron 2 Criterion.
|
||
|
|
||
|
Args:
|
||
|
use_stop_token_loss (bool, optional): Whether to use a loss for stop token prediction. Defaults to True.
|
||
|
use_guided_attention_loss (bool, optional): Whether to use a loss for attention weights. Defaults to False.
|
||
|
sigma (float, optional): Hyper-parameter sigma for guided attention loss. Defaults to 0.2.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.spec_criterion = nn.MSELoss()
|
||
|
self.use_stop_token_loss = use_stop_token_loss
|
||
|
self.use_guided_attention_loss = use_guided_attention_loss
|
||
|
self.attn_criterion = guided_attention_loss
|
||
|
self.stop_criterion = paddle.nn.BCEWithLogitsLoss()
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def forward(self,
|
||
|
mel_outputs,
|
||
|
mel_outputs_postnet,
|
||
|
mel_targets,
|
||
|
attention_weights=None,
|
||
|
slens=None,
|
||
|
plens=None,
|
||
|
stop_logits=None):
|
||
|
"""Calculate tacotron2 loss.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mel_outputs: Tensor [shape=(B, T_mel, C)]
|
||
|
Output mel spectrogram sequence.
|
||
|
|
||
|
mel_outputs_postnet: Tensor [shape(B, T_mel, C)]
|
||
|
Output mel spectrogram sequence after postnet.
|
||
|
|
||
|
mel_targets: Tensor [shape=(B, T_mel, C)]
|
||
|
Target mel spectrogram sequence.
|
||
|
|
||
|
attention_weights: Tensor [shape=(B, T_mel, T_enc)]
|
||
|
Attention weights. This should be provided when
|
||
|
`use_guided_attention_loss` is True.
|
||
|
|
||
|
slens: Tensor [shape=(B,)]
|
||
|
Number of frames of mel spectrograms. This should be provided when
|
||
|
`use_guided_attention_loss` is True.
|
||
|
|
||
|
plens: Tensor [shape=(B, )]
|
||
|
Number of text or phone ids of each utterance. This should be
|
||
|
provided when `use_guided_attention_loss` is True.
|
||
|
|
||
|
stop_logits: Tensor [shape=(B, T_mel)]
|
||
|
Stop logits of each mel spectrogram frame. This should be provided
|
||
|
when `use_stop_token_loss` is True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
losses : Dict[str, Tensor]
|
||
|
|
||
|
loss: the sum of the other three losses;
|
||
|
|
||
|
mel_loss: MSE loss compute by mel_targets and mel_outputs;
|
||
|
|
||
|
post_mel_loss: MSE loss compute by mel_targets and mel_outputs_postnet;
|
||
|
|
||
|
guided_attn_loss: Guided attention loss for attention weights;
|
||
|
|
||
|
stop_loss: Binary cross entropy loss for stop token prediction.
|
||
|
"""
|
||
|
mel_loss = self.spec_criterion(mel_outputs, mel_targets)
|
||
|
post_mel_loss = self.spec_criterion(mel_outputs_postnet, mel_targets)
|
||
|
total_loss = mel_loss + post_mel_loss
|
||
|
if self.use_guided_attention_loss:
|
||
|
gal_loss = self.attn_criterion(attention_weights, slens, plens,
|
||
|
self.sigma)
|
||
|
total_loss += gal_loss
|
||
|
if self.use_stop_token_loss:
|
||
|
T_dec = mel_targets.shape[1]
|
||
|
stop_labels = F.one_hot(slens - 1, num_classes=T_dec)
|
||
|
stop_token_loss = self.stop_criterion(stop_logits, stop_labels)
|
||
|
total_loss += stop_token_loss
|
||
|
|
||
|
losses = {
|
||
|
"loss": total_loss,
|
||
|
"mel_loss": mel_loss,
|
||
|
"post_mel_loss": post_mel_loss
|
||
|
}
|
||
|
if self.use_guided_attention_loss:
|
||
|
losses["guided_attn_loss"] = gal_loss
|
||
|
if self.use_stop_token_loss:
|
||
|
losses["stop_loss"] = stop_token_loss
|
||
|
return losses
|