You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.4 KiB
103 lines
3.4 KiB
2 years ago
|
from typing import Optional
|
||
|
|
||
|
import paddle
|
||
|
import scipy.io.wavfile
|
||
|
|
||
|
|
||
|
def normalize_wav(tensor: paddle.Tensor) -> paddle.Tensor:
|
||
|
if tensor.dtype == paddle.float32:
|
||
|
pass
|
||
|
elif tensor.dtype == paddle.int32:
|
||
|
tensor = paddle.cast(tensor, paddle.float32)
|
||
|
tensor[tensor > 0] /= 2147483647.0
|
||
|
tensor[tensor < 0] /= 2147483648.0
|
||
|
elif tensor.dtype == paddle.int16:
|
||
|
tensor = paddle.cast(tensor, paddle.float32)
|
||
|
tensor[tensor > 0] /= 32767.0
|
||
|
tensor[tensor < 0] /= 32768.0
|
||
|
elif tensor.dtype == paddle.uint8:
|
||
|
tensor = paddle.cast(tensor, paddle.float32) - 128
|
||
|
tensor[tensor > 0] /= 127.0
|
||
|
tensor[tensor < 0] /= 128.0
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def get_wav_data(
|
||
|
dtype: str,
|
||
|
num_channels: int,
|
||
|
*,
|
||
|
num_frames: Optional[int]=None,
|
||
|
normalize: bool=True,
|
||
|
channels_first: bool=True, ):
|
||
|
"""Generate linear signal of the given dtype and num_channels
|
||
|
|
||
|
Data range is
|
||
|
[-1.0, 1.0] for float32,
|
||
|
[-2147483648, 2147483647] for int32
|
||
|
[-32768, 32767] for int16
|
||
|
[0, 255] for uint8
|
||
|
|
||
|
num_frames allow to change the linear interpolation parameter.
|
||
|
Default values are 256 for uint8, else 1 << 16.
|
||
|
1 << 16 as default is so that int16 value range is completely covered.
|
||
|
"""
|
||
|
dtype_ = getattr(paddle, dtype)
|
||
|
|
||
|
if num_frames is None:
|
||
|
if dtype == "uint8":
|
||
|
num_frames = 256
|
||
|
else:
|
||
|
num_frames = 1 << 16
|
||
|
|
||
|
# paddle linspace not support uint8, int8, int16
|
||
|
#if dtype == "uint8":
|
||
|
# base = paddle.linspace(0, 255, num_frames, dtype=dtype_)
|
||
|
#dtype_np = getattr(np, dtype)
|
||
|
#base_np = np.linspace(0, 255, num_frames, dtype_np)
|
||
|
#base = paddle.to_tensor(base_np, dtype=dtype_)
|
||
|
#elif dtype == "int8":
|
||
|
# base = paddle.linspace(-128, 127, num_frames, dtype=dtype_)
|
||
|
#dtype_np = getattr(np, dtype)
|
||
|
#base_np = np.linspace(-128, 127, num_frames, dtype_np)
|
||
|
#base = paddle.to_tensor(base_np, dtype=dtype_)
|
||
|
if dtype == "float32":
|
||
|
base = paddle.linspace(-1.0, 1.0, num_frames, dtype=dtype_)
|
||
|
elif dtype == "float64":
|
||
|
base = paddle.linspace(-1.0, 1.0, num_frames, dtype=dtype_)
|
||
|
elif dtype == "int32":
|
||
|
base = paddle.linspace(
|
||
|
-2147483648, 2147483647, num_frames, dtype=dtype_)
|
||
|
#elif dtype == "int16":
|
||
|
# base = paddle.linspace(-32768, 32767, num_frames, dtype=dtype_)
|
||
|
#dtype_np = getattr(np, dtype)
|
||
|
#base_np = np.linspace(-32768, 32767, num_frames, dtype_np)
|
||
|
#base = paddle.to_tensor(base_np, dtype=dtype_)
|
||
|
else:
|
||
|
raise NotImplementedError(f"Unsupported dtype {dtype}")
|
||
|
data = base.tile([num_channels, 1])
|
||
|
if not channels_first:
|
||
|
data = data.transpose([1, 0])
|
||
|
if normalize:
|
||
|
data = normalize_wav(data)
|
||
|
return data
|
||
|
|
||
|
|
||
|
def load_wav(path: str, normalize=True, channels_first=True) -> paddle.Tensor:
|
||
|
"""Load wav file without paddleaudio"""
|
||
|
sample_rate, data = scipy.io.wavfile.read(path)
|
||
|
data = paddle.to_tensor(data.copy())
|
||
|
if data.ndim == 1:
|
||
|
data = data.unsqueeze(1)
|
||
|
if normalize:
|
||
|
data = normalize_wav(data)
|
||
|
if channels_first:
|
||
|
data = data.transpose([1, 0])
|
||
|
return data, sample_rate
|
||
|
|
||
|
|
||
|
def save_wav(path, data, sample_rate, channels_first=True):
|
||
|
"""Save wav file without paddleaudio"""
|
||
|
if channels_first:
|
||
|
data = data.transpose([1, 0])
|
||
|
scipy.io.wavfile.write(path, sample_rate, data.numpy())
|