You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.4 KiB
136 lines
4.4 KiB
2 years ago
|
import json
|
||
|
import os.path
|
||
|
|
||
|
import paddle
|
||
|
from parameterized import param
|
||
|
#code is from:https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/common_utils/data_utils.py with modification.
|
||
|
|
||
|
_TEST_DIR_PATH = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
|
||
|
|
||
|
|
||
|
def get_asset_path(*paths):
|
||
|
"""Return full path of a test asset"""
|
||
|
return os.path.join(_TEST_DIR_PATH, "assets", *paths)
|
||
|
|
||
|
|
||
|
def load_params(*paths):
|
||
|
with open(get_asset_path(*paths), "r") as file:
|
||
|
return [param(json.loads(line)) for line in file]
|
||
|
|
||
|
|
||
|
def load_effects_params(*paths):
|
||
|
params = []
|
||
|
with open(*paths, "r") as file:
|
||
|
for line in file:
|
||
|
data = json.loads(line)
|
||
|
for effect in data["effects"]:
|
||
|
for i, arg in enumerate(effect):
|
||
|
if arg.startswith("<ASSET_DIR>"):
|
||
|
effect[i] = arg.replace("<ASSET_DIR>", get_asset_path())
|
||
|
params.append(param(data))
|
||
|
return params
|
||
|
|
||
|
|
||
|
def convert_tensor_encoding(
|
||
|
tensor: paddle.tensor,
|
||
|
dtype: paddle.dtype, ):
|
||
|
"""Convert input tensor with values between -1 and 1 to integer encoding
|
||
|
Args:
|
||
|
tensor: input tensor, assumed between -1 and 1
|
||
|
dtype: desired output tensor dtype
|
||
|
Returns:
|
||
|
Tensor: shape of (n_channels, sample_rate * duration)
|
||
|
"""
|
||
|
if dtype == paddle.int32:
|
||
|
tensor *= (tensor > 0) * 2147483647 + (tensor < 0) * 2147483648
|
||
|
if dtype == paddle.int16:
|
||
|
tensor *= (tensor > 0) * 32767 + (tensor < 0) * 32768
|
||
|
if dtype == paddle.uint8:
|
||
|
tensor *= (tensor > 0) * 127 + (tensor < 0) * 128
|
||
|
tensor += 128
|
||
|
tensor = paddle.to_tensor(tensor, dtype)
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
#def get_whitenoise(
|
||
|
#*,
|
||
|
#sample_rate: int = 16000,
|
||
|
#duration: float = 1, # seconds
|
||
|
#n_channels: int = 1,
|
||
|
#seed: int = 0,
|
||
|
#dtype: Union[str, paddle.dtype] = "float32",
|
||
|
#device: Union[str, paddle.device] = "cpu",
|
||
|
#channels_first=True,
|
||
|
#scale_factor: float = 1,
|
||
|
#):
|
||
|
#"""Generate pseudo audio data with whitenoise
|
||
|
#Args:
|
||
|
#sample_rate: Sampling rate
|
||
|
#duration: Length of the resulting Tensor in seconds.
|
||
|
#n_channels: Number of channels
|
||
|
#seed: Seed value used for random number generation.
|
||
|
#Note that this function does not modify global random generator state.
|
||
|
#dtype: Torch dtype
|
||
|
#device: device
|
||
|
#channels_first: whether first dimension is n_channels
|
||
|
#scale_factor: scale the Tensor before clamping and quantization
|
||
|
#Returns:
|
||
|
#Tensor: shape of (n_channels, sample_rate * duration)
|
||
|
#"""
|
||
|
#if isinstance(dtype, str):
|
||
|
#dtype = getattr(paddle, dtype)
|
||
|
#if dtype not in [paddle.float64, paddle.float32, paddle.int32, paddle.int16, paddle.uint8]:
|
||
|
#raise NotImplementedError(f"dtype {dtype} is not supported.")
|
||
|
## According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices,
|
||
|
## so we only fork on CPU, generate values and move the data to the given device
|
||
|
#with paddle.random.fork_rng([]):
|
||
|
#paddle.random.manual_seed(seed)
|
||
|
#tensor = paddle.randn([n_channels, int(sample_rate * duration)], dtype=paddle.float32, device="cpu")
|
||
|
#tensor /= 2.0
|
||
|
#tensor *= scale_factor
|
||
|
#tensor.clamp_(-1.0, 1.0)
|
||
|
#if not channels_first:
|
||
|
#tensor = tensor.t()
|
||
|
|
||
|
#tensor = tensor.to(device)
|
||
|
|
||
|
#return convert_tensor_encoding(tensor, dtype)
|
||
|
|
||
|
|
||
|
def get_sinusoid(
|
||
|
*,
|
||
|
frequency: float=300,
|
||
|
sample_rate: int=16000,
|
||
|
duration: float=1, # seconds
|
||
|
n_channels: int=1,
|
||
|
dtype: str="float32",
|
||
|
device: str="cpu",
|
||
|
channels_first: bool=True, ):
|
||
|
"""Generate pseudo audio data with sine wave.
|
||
|
|
||
|
Args:
|
||
|
frequency: Frequency of sine wave
|
||
|
sample_rate: Sampling rate
|
||
|
duration: Length of the resulting Tensor in seconds.
|
||
|
n_channels: Number of channels
|
||
|
dtype: Torch dtype
|
||
|
device: device
|
||
|
|
||
|
Returns:
|
||
|
Tensor: shape of (n_channels, sample_rate * duration)
|
||
|
"""
|
||
|
if isinstance(dtype, str):
|
||
|
dtype = getattr(paddle, dtype)
|
||
|
pie2 = 2 * 3.141592653589793
|
||
|
end = pie2 * frequency * duration
|
||
|
num_frames = int(sample_rate * duration)
|
||
|
# Randomize the initial phase. (except the first channel)
|
||
|
theta0 = pie2 * paddle.randn([n_channels, 1], dtype=paddle.float32)
|
||
|
theta0[0, :] = 0
|
||
|
theta = paddle.linspace(0, end, num_frames, dtype=paddle.float32)
|
||
|
theta = theta0 + theta
|
||
|
tensor = paddle.sin(theta)
|
||
|
if not channels_first:
|
||
|
tensor = paddle.t(tensor)
|
||
|
return convert_tensor_encoding(tensor, dtype)
|