|
|
|
#!/usr/bin/env python3
|
E2E/Streaming Transformer/Conformer ASR (#578)
* add cmvn and label smoothing loss layer
* add layer for transformer
* add glu and conformer conv
* add torch compatiable hack, mask funcs
* not hack size since it exists
* add test; attention
* add attention, common utils, hack paddle
* add audio utils
* conformer batch padding mask bug fix #223
* fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2
* fix ci
* fix ci
* add encoder
* refactor egs
* add decoder
* refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils
* refactor docs
* add fix
* fix readme
* fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
* fix docstring
* refactor data feed order
* add u2 model
* refactor cmvn, test
* add utils
* add u2 config
* fix bugs
* fix bugs
* fix autograd maybe has problem when using inplace operation
* refactor data, build vocab; add format data
* fix text featurizer
* refactor build vocab
* add fbank, refactor feature of speech
* refactor audio feat
* refactor data preprare
* refactor data
* model init from config
* add u2 bins
* flake8
* can train
* fix bugs, add coverage, add scripts
* test can run
* fix data
* speed perturb with sox
* add spec aug
* fix for train
* fix train logitc
* fix logger
* log valid loss, time dataset process
* using np for speed perturb, remove some debug log of grad clip
* fix logger
* fix build vocab
* fix logger name
* using module logger as default
* fix
* fix install
* reorder imports
* fix board logger
* fix logger
* kaldi fbank and mfcc
* fix cmvn and print prarams
* fix add_eos_sos and cmvn
* fix cmvn compute
* fix logger and cmvn
* fix subsampling, label smoothing loss, remove useless
* add notebook test
* fix log
* fix tb logger
* multi gpu valid
* fix log
* fix log
* fix config
* fix compute cmvn, need paddle 2.1
* add cmvn notebook
* fix layer tools
* fix compute cmvn
* add rtf
* fix decoding
* fix layer tools
* fix log, add avg script
* more avg and test info
* fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh;
* add vimrc
* refactor tiny script, add transformer and stream conf
* spm demo; librisppech scripts and confs
* fix log
* add librispeech scripts
* refactor data pipe; fix conf; fix u2 default params
* fix bugs
* refactor aishell scripts
* fix test
* fix cmvn
* fix s0 scripts
* fix ds2 scripts and bugs
* fix dev & test dataset filter
* fix dataset filter
* filter dev
* fix ckpt path
* filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test
* add comment
* add syllable doc
* fix ds2 configs
* add doc
* add pypinyin tools
* fix decoder using blank_id=0
* mmseg with pybind11
* format code
4 years ago
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in
|
|
|
|
# https://github.com/pytorch/fairseq/blob/master/LICENSE
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import contextlib
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import sentencepiece as spm
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--model", required=True,
|
|
|
|
help="sentencepiece model to use for encoding")
|
|
|
|
parser.add_argument("--inputs", nargs="+", default=['-'],
|
|
|
|
help="input files to filter/encode")
|
|
|
|
parser.add_argument("--outputs", nargs="+", default=['-'],
|
|
|
|
help="path to save encoded outputs")
|
|
|
|
parser.add_argument("--output_format", choices=["piece", "id"], default="piece")
|
|
|
|
parser.add_argument("--min-len", type=int, metavar="N",
|
|
|
|
help="filter sentence pairs with fewer than N tokens")
|
|
|
|
parser.add_argument("--max-len", type=int, metavar="N",
|
|
|
|
help="filter sentence pairs with more than N tokens")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
assert len(args.inputs) == len(args.outputs), \
|
|
|
|
"number of input and output paths should match"
|
|
|
|
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
|
|
sp.Load(args.model)
|
|
|
|
|
|
|
|
if args.output_format == "piece":
|
|
|
|
def encode(l):
|
|
|
|
return sp.EncodeAsPieces(l)
|
|
|
|
elif args.output_format == "id":
|
|
|
|
def encode(l):
|
|
|
|
return list(map(str, sp.EncodeAsIds(l)))
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
if args.min_len is not None or args.max_len is not None:
|
|
|
|
def valid(line):
|
|
|
|
return (
|
|
|
|
(args.min_len is None or len(line) >= args.min_len) and
|
|
|
|
(args.max_len is None or len(line) <= args.max_len)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
def valid(lines):
|
|
|
|
return True
|
|
|
|
|
|
|
|
with contextlib.ExitStack() as stack:
|
|
|
|
inputs = [
|
|
|
|
stack.enter_context(open(input, "r", encoding="utf-8"))
|
|
|
|
if input != "-" else sys.stdin
|
|
|
|
for input in args.inputs
|
|
|
|
]
|
|
|
|
outputs = [
|
|
|
|
stack.enter_context(open(output, "w", encoding="utf-8"))
|
|
|
|
if output != "-" else sys.stdout
|
|
|
|
for output in args.outputs
|
|
|
|
]
|
|
|
|
|
|
|
|
stats = {
|
|
|
|
"num_empty": 0,
|
|
|
|
"num_filtered": 0,
|
|
|
|
}
|
|
|
|
|
|
|
|
def encode_line(line):
|
|
|
|
line = line.strip()
|
|
|
|
if len(line) > 0:
|
|
|
|
line = encode(line)
|
|
|
|
if valid(line):
|
|
|
|
return line
|
|
|
|
else:
|
|
|
|
stats["num_filtered"] += 1
|
|
|
|
else:
|
|
|
|
stats["num_empty"] += 1
|
|
|
|
return None
|
|
|
|
|
|
|
|
for i, lines in enumerate(zip(*inputs), start=1):
|
|
|
|
enc_lines = list(map(encode_line, lines))
|
|
|
|
if not any(enc_line is None for enc_line in enc_lines):
|
|
|
|
for enc_line, output_h in zip(enc_lines, outputs):
|
|
|
|
print(" ".join(enc_line), file=output_h)
|
|
|
|
if i % 10000 == 0:
|
|
|
|
print("processed {} lines".format(i), file=sys.stderr)
|
|
|
|
|
|
|
|
print("skipped {} empty lines".format(stats["num_empty"]), file=sys.stderr)
|
|
|
|
print("filtered {} lines".format(stats["num_filtered"]), file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|