|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from https://github.com/fatchord/WaveRNN
|
|
|
|
import sys
|
|
|
|
import time
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
from paddle.nn import functional as F
|
|
|
|
|
|
|
|
from paddlespeech.t2s.audio.codec import decode_mu_law
|
|
|
|
from paddlespeech.t2s.modules.losses import sample_from_discretized_mix_logistic
|
|
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
|
|
from paddlespeech.t2s.modules.upsample import Stretch2D
|
|
|
|
|
|
|
|
|
|
|
|
class ResBlock(nn.Layer):
|
|
|
|
def __init__(self, dims):
|
|
|
|
super().__init__()
|
|
|
|
self.conv1 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
|
|
|
|
self.conv2 = nn.Conv1D(dims, dims, kernel_size=1, bias_attr=False)
|
|
|
|
self.batch_norm1 = nn.BatchNorm1D(dims)
|
|
|
|
self.batch_norm2 = nn.BatchNorm1D(dims)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
'''
|
|
|
|
conv -> bn -> relu -> conv -> bn + residual connection
|
|
|
|
'''
|
|
|
|
residual = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.batch_norm1(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.batch_norm2(x)
|
|
|
|
return x + residual
|
|
|
|
|
|
|
|
|
|
|
|
class MelResNet(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
res_blocks: int=10,
|
|
|
|
compute_dims: int=128,
|
|
|
|
res_out_dims: int=128,
|
|
|
|
aux_channels: int=80,
|
|
|
|
aux_context_window: int=0):
|
|
|
|
super().__init__()
|
|
|
|
k_size = aux_context_window * 2 + 1
|
|
|
|
# pay attention here, the dim reduces aux_context_window * 2
|
|
|
|
self.conv_in = nn.Conv1D(
|
|
|
|
aux_channels, compute_dims, kernel_size=k_size, bias_attr=False)
|
|
|
|
self.batch_norm = nn.BatchNorm1D(compute_dims)
|
|
|
|
self.layers = nn.LayerList()
|
|
|
|
for _ in range(res_blocks):
|
|
|
|
self.layers.append(ResBlock(compute_dims))
|
|
|
|
self.conv_out = nn.Conv1D(compute_dims, res_out_dims, kernel_size=1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
'''
|
|
|
|
Args:
|
|
|
|
x (Tensor):
|
|
|
|
Input tensor (B, in_dims, T).
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
Output tensor (B, res_out_dims, T).
|
|
|
|
'''
|
|
|
|
|
|
|
|
x = self.conv_in(x)
|
|
|
|
x = self.batch_norm(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
for f in self.layers:
|
|
|
|
x = f(x)
|
|
|
|
x = self.conv_out(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class UpsampleNetwork(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
aux_channels: int=80,
|
|
|
|
upsample_scales: List[int]=[4, 5, 3, 5],
|
|
|
|
compute_dims: int=128,
|
|
|
|
res_blocks: int=10,
|
|
|
|
res_out_dims: int=128,
|
|
|
|
aux_context_window: int=2):
|
|
|
|
super().__init__()
|
|
|
|
# total_scale is the total Up sampling multiple
|
|
|
|
total_scale = np.prod(upsample_scales)
|
|
|
|
# TODO pad*total_scale is numpy.int64
|
|
|
|
self.indent = int(aux_context_window * total_scale)
|
|
|
|
self.resnet = MelResNet(
|
|
|
|
res_blocks=res_blocks,
|
|
|
|
aux_channels=aux_channels,
|
|
|
|
compute_dims=compute_dims,
|
|
|
|
res_out_dims=res_out_dims,
|
|
|
|
aux_context_window=aux_context_window)
|
|
|
|
self.resnet_stretch = Stretch2D(total_scale, 1)
|
|
|
|
self.up_layers = nn.LayerList()
|
|
|
|
for scale in upsample_scales:
|
|
|
|
k_size = (1, scale * 2 + 1)
|
|
|
|
padding = (0, scale)
|
|
|
|
stretch = Stretch2D(scale, 1)
|
|
|
|
|
|
|
|
conv = nn.Conv2D(
|
|
|
|
1, 1, kernel_size=k_size, padding=padding, bias_attr=False)
|
|
|
|
weight_ = paddle.full_like(conv.weight, 1. / k_size[1])
|
|
|
|
conv.weight.set_value(weight_)
|
|
|
|
self.up_layers.append(stretch)
|
|
|
|
self.up_layers.append(conv)
|
|
|
|
|
|
|
|
def forward(self, m):
|
|
|
|
'''
|
|
|
|
Args:
|
|
|
|
c (Tensor):
|
|
|
|
Input tensor (B, C_aux, T).
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), C_aux).
|
|
|
|
Tensor:
|
|
|
|
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), res_out_dims).
|
|
|
|
'''
|
|
|
|
# aux: [B, C_aux, T]
|
|
|
|
# -> [B, res_out_dims, T - 2 * aux_context_window]
|
|
|
|
# -> [B, 1, res_out_dims, T - 2 * aux_context_window]
|
|
|
|
aux = self.resnet(m).unsqueeze(1)
|
|
|
|
# aux: [B, 1, res_out_dims, T - 2 * aux_context_window]
|
|
|
|
# -> [B, 1, res_out_dims, (T - 2 * pad) * prob(upsample_scales)]
|
|
|
|
aux = self.resnet_stretch(aux)
|
|
|
|
# aux: [B, 1, res_out_dims, T * prob(upsample_scales)]
|
|
|
|
# -> [B, res_out_dims, T * prob(upsample_scales)]
|
|
|
|
aux = aux.squeeze(1)
|
|
|
|
# m: [B, C_aux, T] -> [B, 1, C_aux, T]
|
|
|
|
m = m.unsqueeze(1)
|
|
|
|
for f in self.up_layers:
|
|
|
|
m = f(m)
|
|
|
|
# m: [B, 1, C_aux, T*prob(upsample_scales)]
|
|
|
|
# -> [B, C_aux, T * prob(upsample_scales)]
|
|
|
|
# -> [B, C_aux, (T - 2 * pad) * prob(upsample_scales)]
|
|
|
|
m = m.squeeze(1)[:, :, self.indent:-self.indent]
|
|
|
|
# m: [B, (T - 2 * pad) * prob(upsample_scales), C_aux]
|
|
|
|
# aux: [B, (T - 2 * pad) * prob(upsample_scales), res_out_dims]
|
|
|
|
return m.transpose([0, 2, 1]), aux.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
|
|
|
|
class WaveRNN(nn.Layer):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
rnn_dims: int=512,
|
|
|
|
fc_dims: int=512,
|
|
|
|
bits: int=9,
|
|
|
|
aux_context_window: int=2,
|
|
|
|
upsample_scales: List[int]=[4, 5, 3, 5],
|
|
|
|
aux_channels: int=80,
|
|
|
|
compute_dims: int=128,
|
|
|
|
res_out_dims: int=128,
|
|
|
|
res_blocks: int=10,
|
|
|
|
hop_length: int=300,
|
|
|
|
sample_rate: int=24000,
|
|
|
|
mode='RAW',
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
'''
|
|
|
|
Args:
|
|
|
|
rnn_dims (int, optional):
|
|
|
|
Hidden dims of RNN Layers.
|
|
|
|
fc_dims (int, optional):
|
|
|
|
Dims of FC Layers.
|
|
|
|
bits (int, optional):
|
|
|
|
bit depth of signal.
|
|
|
|
aux_context_window (int, optional):
|
|
|
|
The context window size of the first convolution applied to the auxiliary input, by default 2
|
|
|
|
upsample_scales (List[int], optional):
|
|
|
|
Upsample scales of the upsample network.
|
|
|
|
aux_channels (int, optional):
|
|
|
|
Auxiliary channel of the residual blocks.
|
|
|
|
compute_dims (int, optional):
|
|
|
|
Dims of Conv1D in MelResNet.
|
|
|
|
res_out_dims (int, optional):
|
|
|
|
Dims of output in MelResNet.
|
|
|
|
res_blocks (int, optional):
|
|
|
|
Number of residual blocks.
|
|
|
|
mode (str, optional):
|
|
|
|
Output mode of the WaveRNN vocoder.
|
|
|
|
`MOL` for Mixture of Logistic Distribution, and `RAW` for quantized bits as the model's output.
|
|
|
|
init_type (str):
|
|
|
|
How to initialize parameters.
|
|
|
|
'''
|
|
|
|
super().__init__()
|
|
|
|
self.mode = mode
|
|
|
|
self.aux_context_window = aux_context_window
|
|
|
|
if self.mode == 'RAW':
|
|
|
|
self.n_classes = 2**bits
|
|
|
|
elif self.mode == 'MOL':
|
|
|
|
self.n_classes = 10 * 3
|
|
|
|
else:
|
|
|
|
RuntimeError('Unknown model mode value - ', self.mode)
|
|
|
|
|
|
|
|
# List of rnns to call 'flatten_parameters()' on
|
|
|
|
self._to_flatten = []
|
|
|
|
|
|
|
|
self.rnn_dims = rnn_dims
|
|
|
|
self.aux_dims = res_out_dims // 4
|
|
|
|
self.hop_length = hop_length
|
|
|
|
self.sample_rate = sample_rate
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
self.upsample = UpsampleNetwork(
|
|
|
|
aux_channels=aux_channels,
|
|
|
|
upsample_scales=upsample_scales,
|
|
|
|
compute_dims=compute_dims,
|
|
|
|
res_blocks=res_blocks,
|
|
|
|
res_out_dims=res_out_dims,
|
|
|
|
aux_context_window=aux_context_window)
|
|
|
|
self.I = nn.Linear(aux_channels + self.aux_dims + 1, rnn_dims)
|
|
|
|
|
|
|
|
self.rnn1 = nn.GRU(rnn_dims, rnn_dims)
|
|
|
|
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims)
|
|
|
|
|
|
|
|
self._to_flatten += [self.rnn1, self.rnn2]
|
|
|
|
|
|
|
|
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
|
|
|
|
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
|
|
|
|
self.fc3 = nn.Linear(fc_dims, self.n_classes)
|
|
|
|
|
|
|
|
# Avoid fragmentation of RNN parameters and associated warning
|
|
|
|
self._flatten_parameters()
|
|
|
|
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
|
|
|
|
def forward(self, x, c):
|
|
|
|
'''
|
|
|
|
Args:
|
|
|
|
x (Tensor):
|
|
|
|
wav sequence, [B, T]
|
|
|
|
c (Tensor):
|
|
|
|
mel spectrogram [B, C_aux, T']
|
|
|
|
|
|
|
|
T = (T' - 2 * aux_context_window ) * hop_length
|
|
|
|
Returns:
|
|
|
|
Tensor: [B, T, n_classes]
|
|
|
|
'''
|
|
|
|
# Although we `_flatten_parameters()` on init, when using DataParallel
|
|
|
|
# the model gets replicated, making it no longer guaranteed that the
|
|
|
|
# weights are contiguous in GPU memory. Hence, we must call it again
|
|
|
|
self._flatten_parameters()
|
|
|
|
|
|
|
|
bsize = paddle.shape(x)[0]
|
|
|
|
h1 = paddle.zeros([1, bsize, self.rnn_dims])
|
|
|
|
h2 = paddle.zeros([1, bsize, self.rnn_dims])
|
|
|
|
# c: [B, T, C_aux]
|
|
|
|
# aux: [B, T, res_out_dims]
|
|
|
|
c, aux = self.upsample(c)
|
|
|
|
|
|
|
|
aux_idx = [self.aux_dims * i for i in range(5)]
|
|
|
|
a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
|
|
|
|
a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
|
|
|
|
a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
|
|
|
|
a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
|
|
|
|
|
|
|
|
x = paddle.concat([x.unsqueeze(-1), c, a1], axis=2)
|
|
|
|
x = self.I(x)
|
|
|
|
res = x
|
|
|
|
x, _ = self.rnn1(x, h1)
|
|
|
|
|
|
|
|
x = x + res
|
|
|
|
res = x
|
|
|
|
x = paddle.concat([x, a2], axis=2)
|
|
|
|
x, _ = self.rnn2(x, h2)
|
|
|
|
|
|
|
|
x = x + res
|
|
|
|
x = paddle.concat([x, a3], axis=2)
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
|
|
|
|
x = paddle.concat([x, a4], axis=2)
|
|
|
|
x = F.relu(self.fc2(x))
|
|
|
|
|
|
|
|
return self.fc3(x)
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def generate(self,
|
|
|
|
c,
|
|
|
|
batched: bool=True,
|
|
|
|
target: int=12000,
|
|
|
|
overlap: int=600,
|
|
|
|
mu_law: bool=True,
|
|
|
|
gen_display: bool=False):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
c(Tensor):
|
|
|
|
input mels, (T', C_aux)
|
|
|
|
batched(bool):
|
|
|
|
generate in batch or not
|
|
|
|
target(int):
|
|
|
|
target number of samples to be generated in each batch entry
|
|
|
|
overlap(int):
|
|
|
|
number of samples for crossfading between batches
|
|
|
|
mu_law(bool)
|
|
|
|
Returns:
|
|
|
|
wav sequence:
|
|
|
|
Output (T' * prod(upsample_scales), out_channels, C_out).
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.eval()
|
|
|
|
|
|
|
|
mu_law = mu_law if self.mode == 'RAW' else False
|
|
|
|
|
|
|
|
output = []
|
|
|
|
start = time.time()
|
|
|
|
|
|
|
|
# pseudo batch
|
|
|
|
# (T, C_aux) -> (1, C_aux, T)
|
|
|
|
c = paddle.transpose(c, [1, 0]).unsqueeze(0)
|
|
|
|
T = paddle.shape(c)[-1]
|
|
|
|
wave_len = T * self.hop_length
|
|
|
|
# TODO remove two transpose op by modifying function pad_tensor
|
|
|
|
c = self.pad_tensor(
|
|
|
|
c.transpose([0, 2, 1]), pad=self.aux_context_window,
|
|
|
|
side='both').transpose([0, 2, 1])
|
|
|
|
|
|
|
|
c, aux = self.upsample(c)
|
|
|
|
|
|
|
|
if batched:
|
|
|
|
# (num_folds, target + 2 * overlap, features)
|
|
|
|
c = self.fold_with_overlap(c, target, overlap)
|
|
|
|
aux = self.fold_with_overlap(aux, target, overlap)
|
|
|
|
|
|
|
|
# for dygraph to static graph, if use seq_len of `b_size, seq_len, _ = paddle.shape(c)` in for
|
|
|
|
# will not get TensorArray
|
|
|
|
# see https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/case_analysis_cn.html#list-lodtensorarray
|
|
|
|
# b_size, seq_len, _ = paddle.shape(c)
|
|
|
|
b_size = paddle.shape(c)[0]
|
|
|
|
seq_len = paddle.shape(c)[1]
|
|
|
|
|
|
|
|
h1 = paddle.zeros([b_size, self.rnn_dims])
|
|
|
|
h2 = paddle.zeros([b_size, self.rnn_dims])
|
|
|
|
x = paddle.zeros([b_size, 1])
|
|
|
|
|
|
|
|
d = self.aux_dims
|
|
|
|
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
|
|
|
|
|
|
|
|
for i in range(seq_len):
|
|
|
|
m_t = c[:, i, :]
|
|
|
|
# for dygraph to static graph
|
|
|
|
# a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
|
|
|
|
a1_t = aux_split[0][:, i, :]
|
|
|
|
a2_t = aux_split[1][:, i, :]
|
|
|
|
a3_t = aux_split[2][:, i, :]
|
|
|
|
a4_t = aux_split[3][:, i, :]
|
|
|
|
x = paddle.concat([x, m_t, a1_t], axis=1)
|
|
|
|
x = self.I(x)
|
|
|
|
# use GRUCell here
|
|
|
|
h1, _ = self.rnn1[0].cell(x, h1)
|
|
|
|
x = x + h1
|
|
|
|
inp = paddle.concat([x, a2_t], axis=1)
|
|
|
|
# use GRUCell here
|
|
|
|
h2, _ = self.rnn2[0].cell(inp, h2)
|
|
|
|
|
|
|
|
x = x + h2
|
|
|
|
x = paddle.concat([x, a3_t], axis=1)
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
|
|
|
|
x = paddle.concat([x, a4_t], axis=1)
|
|
|
|
x = F.relu(self.fc2(x))
|
|
|
|
|
|
|
|
logits = self.fc3(x)
|
|
|
|
|
|
|
|
if self.mode == 'MOL':
|
|
|
|
sample = sample_from_discretized_mix_logistic(
|
|
|
|
logits.unsqueeze(0).transpose([0, 2, 1]))
|
|
|
|
output.append(sample.reshape([-1]))
|
|
|
|
x = sample.transpose([1, 0, 2])
|
|
|
|
|
|
|
|
elif self.mode == 'RAW':
|
|
|
|
# fix bug for paddle 2.3, see https://github.com/PaddlePaddle/Paddle/commit/01f606b4f1ca3e184a59111084ed460ee0798a5a
|
|
|
|
# posterior = F.softmax(logits, axis=1)
|
|
|
|
posterior = logits
|
|
|
|
distrib = paddle.distribution.Categorical(posterior)
|
|
|
|
# corresponding operate [np.floor((fx + 1) / 2 * mu + 0.5)] in enocde_mu_law
|
|
|
|
# distrib.sample([1])[0].cast('float32'): [0, 2**bits-1]
|
|
|
|
# sample: [-1, 1]
|
|
|
|
sample = 2 * distrib.sample([1])[0].cast('float32') / (
|
|
|
|
self.n_classes - 1.) - 1.
|
|
|
|
output.append(sample)
|
|
|
|
x = sample.unsqueeze(-1)
|
|
|
|
else:
|
|
|
|
raise RuntimeError('Unknown model mode value - ', self.mode)
|
|
|
|
|
|
|
|
if gen_display:
|
|
|
|
if i % 1000 == 0:
|
|
|
|
self.gen_display(i, int(seq_len), int(b_size), start)
|
|
|
|
|
|
|
|
output = paddle.stack(output).transpose([1, 0])
|
|
|
|
|
|
|
|
if mu_law:
|
|
|
|
output = decode_mu_law(output, self.n_classes, False)
|
|
|
|
|
|
|
|
if batched:
|
|
|
|
output = self.xfade_and_unfold(output, target, overlap)
|
|
|
|
else:
|
|
|
|
output = output[0]
|
|
|
|
|
|
|
|
# Fade-out at the end to avoid signal cutting out suddenly
|
|
|
|
fade_out = paddle.linspace(1, 0, 10 * self.hop_length)
|
|
|
|
output = output[:wave_len]
|
|
|
|
output[-10 * self.hop_length:] *= fade_out
|
|
|
|
|
|
|
|
self.train()
|
|
|
|
|
|
|
|
# 增加 C_out 维度
|
|
|
|
return output.unsqueeze(-1)
|
|
|
|
|
|
|
|
def _flatten_parameters(self):
|
|
|
|
[m.flatten_parameters() for m in self._to_flatten]
|
|
|
|
|
|
|
|
def pad_tensor(self, x, pad, side='both'):
|
|
|
|
'''
|
|
|
|
Args:
|
|
|
|
x(Tensor):
|
|
|
|
mel, [1, n_frames, 80]
|
|
|
|
pad(int):
|
|
|
|
side(str, optional): (Default value = 'both')
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor
|
|
|
|
'''
|
|
|
|
b, t, _ = paddle.shape(x)
|
|
|
|
# for dygraph to static graph
|
|
|
|
c = x.shape[-1]
|
|
|
|
total = t + 2 * pad if side == 'both' else t + pad
|
|
|
|
padded = paddle.zeros([b, total, c])
|
|
|
|
if side == 'before' or side == 'both':
|
|
|
|
padded[:, pad:pad + t, :] = x
|
|
|
|
elif side == 'after':
|
|
|
|
padded[:, :t, :] = x
|
|
|
|
return padded
|
|
|
|
|
|
|
|
def fold_with_overlap(self, x, target, overlap):
|
|
|
|
'''
|
|
|
|
Fold the tensor with overlap for quick batched inference.
|
|
|
|
Overlap will be used for crossfading in xfade_and_unfold()
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x(Tensor):
|
|
|
|
Upsampled conditioning features. mels or aux
|
|
|
|
shape=(1, T, features)
|
|
|
|
mels: [1, T, 80]
|
|
|
|
aux: [1, T, 128]
|
|
|
|
target(int):
|
|
|
|
Target timesteps for each index of batch
|
|
|
|
overlap(int):
|
|
|
|
Timesteps for both xfade and rnn warmup
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
shape=(num_folds, target + 2 * overlap, features)
|
|
|
|
num_flods = (time_seq - overlap) // (target + overlap)
|
|
|
|
mel: [num_folds, target + 2 * overlap, 80]
|
|
|
|
aux: [num_folds, target + 2 * overlap, 128]
|
|
|
|
|
|
|
|
Details:
|
|
|
|
x = [[h1, h2, ... hn]]
|
|
|
|
Where each h is a vector of conditioning features
|
|
|
|
Eg: target=2, overlap=1 with x.size(1)=10
|
|
|
|
|
|
|
|
folded = [[h1, h2, h3, h4],
|
|
|
|
[h4, h5, h6, h7],
|
|
|
|
[h7, h8, h9, h10]]
|
|
|
|
'''
|
|
|
|
|
|
|
|
_, total_len, features = paddle.shape(x)
|
|
|
|
|
|
|
|
# Calculate variables needed
|
|
|
|
num_folds = (total_len - overlap) // (target + overlap)
|
|
|
|
extended_len = num_folds * (overlap + target) + overlap
|
|
|
|
remaining = total_len - extended_len
|
|
|
|
|
|
|
|
# Pad if some time steps poking out
|
|
|
|
if remaining != 0:
|
|
|
|
num_folds += 1
|
|
|
|
padding = target + 2 * overlap - remaining
|
|
|
|
x = self.pad_tensor(x, padding, side='after')
|
|
|
|
|
|
|
|
folded = paddle.zeros([num_folds, target + 2 * overlap, features])
|
|
|
|
|
|
|
|
# Get the values for the folded tensor
|
|
|
|
for i in range(num_folds):
|
|
|
|
start = i * (target + overlap)
|
|
|
|
end = start + target + 2 * overlap
|
|
|
|
folded[i] = x[0][start:end, :]
|
|
|
|
return folded
|
|
|
|
|
|
|
|
def xfade_and_unfold(self, y, target: int=12000, overlap: int=600):
|
|
|
|
''' Applies a crossfade and unfolds into a 1d array.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
y (Tensor):
|
|
|
|
Batched sequences of audio samples
|
|
|
|
shape=(num_folds, target + 2 * overlap)
|
|
|
|
dtype=paddle.float32
|
|
|
|
overlap (int): Timesteps for both xfade and rnn warmup
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor
|
|
|
|
audio samples in a 1d array
|
|
|
|
shape=(total_len)
|
|
|
|
dtype=paddle.float32
|
|
|
|
|
|
|
|
Details:
|
|
|
|
y = [[seq1],
|
|
|
|
[seq2],
|
|
|
|
[seq3]]
|
|
|
|
|
|
|
|
Apply a gain envelope at both ends of the sequences
|
|
|
|
|
|
|
|
y = [[seq1_in, seq1_target, seq1_out],
|
|
|
|
[seq2_in, seq2_target, seq2_out],
|
|
|
|
[seq3_in, seq3_target, seq3_out]]
|
|
|
|
|
|
|
|
Stagger and add up the groups of samples:
|
|
|
|
|
|
|
|
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
|
|
|
|
|
|
|
|
'''
|
|
|
|
# num_folds = (total_len - overlap) // (target + overlap)
|
|
|
|
num_folds, length = paddle.shape(y)
|
|
|
|
target = length - 2 * overlap
|
|
|
|
total_len = num_folds * (target + overlap) + overlap
|
|
|
|
|
|
|
|
# Need some silence for the run warmup
|
|
|
|
slience_len = 0
|
|
|
|
linear_len = slience_len
|
|
|
|
fade_len = overlap - slience_len
|
|
|
|
slience = paddle.zeros([slience_len], dtype=paddle.float32)
|
|
|
|
linear = paddle.ones([linear_len], dtype=paddle.float32)
|
|
|
|
|
|
|
|
# Equal power crossfade
|
|
|
|
# fade_in increase from 0 to 1, fade_out reduces from 1 to 0
|
|
|
|
sigmoid_scale = 2.3
|
|
|
|
t = paddle.linspace(
|
|
|
|
-sigmoid_scale, sigmoid_scale, fade_len, dtype=paddle.float32)
|
|
|
|
# sigmoid 曲线应该更好
|
|
|
|
fade_in = paddle.nn.functional.sigmoid(t)
|
|
|
|
fade_out = 1 - paddle.nn.functional.sigmoid(t)
|
|
|
|
# Concat the silence to the fades
|
|
|
|
fade_out = paddle.concat([linear, fade_out])
|
|
|
|
fade_in = paddle.concat([slience, fade_in])
|
|
|
|
|
|
|
|
# Apply the gain to the overlap samples
|
|
|
|
y[:, :overlap] *= fade_in
|
|
|
|
y[:, -overlap:] *= fade_out
|
|
|
|
|
|
|
|
unfolded = paddle.zeros([total_len], dtype=paddle.float32)
|
|
|
|
|
|
|
|
# Loop to add up all the samples
|
|
|
|
for i in range(num_folds):
|
|
|
|
start = i * (target + overlap)
|
|
|
|
end = start + target + 2 * overlap
|
|
|
|
unfolded[start:end] += y[i]
|
|
|
|
|
|
|
|
return unfolded
|
|
|
|
|
|
|
|
def gen_display(self, i, seq_len, b_size, start):
|
|
|
|
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
|
|
|
|
pbar = self.progbar(i, seq_len)
|
|
|
|
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
|
|
|
|
sys.stdout.write(f"\r{msg}")
|
|
|
|
|
|
|
|
def progbar(self, i, n, size=16):
|
|
|
|
done = int(i * size) // n
|
|
|
|
bar = ''
|
|
|
|
for i in range(size):
|
|
|
|
bar += '█' if i <= done else '░'
|
|
|
|
return bar
|
|
|
|
|
|
|
|
|
|
|
|
class WaveRNNInference(nn.Layer):
|
|
|
|
def __init__(self, normalizer, wavernn):
|
|
|
|
super().__init__()
|
|
|
|
self.normalizer = normalizer
|
|
|
|
self.wavernn = wavernn
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
logmel,
|
|
|
|
batched: bool=True,
|
|
|
|
target: int=12000,
|
|
|
|
overlap: int=600,
|
|
|
|
mu_law: bool=True,
|
|
|
|
gen_display: bool=False):
|
|
|
|
normalized_mel = self.normalizer(logmel)
|
|
|
|
|
|
|
|
wav = self.wavernn.generate(
|
|
|
|
normalized_mel, )
|
|
|
|
# batched=batched,
|
|
|
|
# target=target,
|
|
|
|
# overlap=overlap,
|
|
|
|
# mu_law=mu_law,
|
|
|
|
# gen_display=gen_display)
|
|
|
|
|
|
|
|
return wav
|