You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
9.9 KiB
322 lines
9.9 KiB
2 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
This code is based on https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
|
||
|
Ths copyright of pytorch/pytorch is a BSD-style license, as found in the LICENSE file.
|
||
|
"""
|
||
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
|
||
|
__all__ = [
|
||
|
"uniform_",
|
||
|
"normal_",
|
||
|
"constant_",
|
||
|
"ones_",
|
||
|
"zeros_",
|
||
|
"xavier_uniform_",
|
||
|
"xavier_normal_",
|
||
|
"kaiming_uniform_",
|
||
|
"kaiming_normal_",
|
||
|
"linear_init_",
|
||
|
"conv_init_",
|
||
|
"reset_initialized_parameter",
|
||
|
"_calculate_fan_in_and_fan_out",
|
||
|
]
|
||
|
|
||
|
|
||
|
def _no_grad_uniform_(tensor, a, b):
|
||
|
with paddle.no_grad():
|
||
|
tensor.set_value(
|
||
|
paddle.uniform(
|
||
|
shape=tensor.shape, dtype=tensor.dtype, min=a, max=b))
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def _no_grad_normal_(tensor, mean=0.0, std=1.0):
|
||
|
with paddle.no_grad():
|
||
|
tensor.set_value(paddle.normal(mean=mean, std=std, shape=tensor.shape))
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def _no_grad_fill_(tensor, value=0.0):
|
||
|
with paddle.no_grad():
|
||
|
tensor.set_value(paddle.full_like(tensor, value, dtype=tensor.dtype))
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def uniform_(tensor, a, b):
|
||
|
"""
|
||
|
Modified tensor inspace using uniform_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
a (float|int): min value.
|
||
|
b (float|int): max value.
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
return _no_grad_uniform_(tensor, a, b)
|
||
|
|
||
|
|
||
|
def normal_(tensor, mean=0.0, std=1.0):
|
||
|
"""
|
||
|
Modified tensor inspace using normal_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
mean (float|int): mean value.
|
||
|
std (float|int): std value.
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
return _no_grad_normal_(tensor, mean, std)
|
||
|
|
||
|
|
||
|
def constant_(tensor, value=0.0):
|
||
|
"""
|
||
|
Modified tensor inspace using constant_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
value (float|int): value to fill tensor.
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
return _no_grad_fill_(tensor, value)
|
||
|
|
||
|
|
||
|
def ones_(tensor):
|
||
|
"""
|
||
|
Modified tensor inspace using ones_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
return _no_grad_fill_(tensor, 1)
|
||
|
|
||
|
|
||
|
def zeros_(tensor):
|
||
|
"""
|
||
|
Modified tensor inspace using zeros_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
return _no_grad_fill_(tensor, 0)
|
||
|
|
||
|
|
||
|
def vector_(tensor, vector):
|
||
|
with paddle.no_grad():
|
||
|
tensor.set_value(paddle.to_tensor(vector, dtype=tensor.dtype))
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def _calculate_fan_in_and_fan_out(tensor, reverse=False):
|
||
|
"""
|
||
|
Calculate (fan_in, _fan_out) for tensor
|
||
|
Args:
|
||
|
tensor (Tensor): paddle.Tensor
|
||
|
reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. e.g. : conv.weight [cout, cin, kh, kw] is False; linear.weight [cin, cout] is True
|
||
|
Return:
|
||
|
Tuple[fan_in, fan_out]
|
||
|
"""
|
||
|
if tensor.ndim < 2:
|
||
|
raise ValueError(
|
||
|
"Fan in and fan out can not be computed for tensor with fewer than 2 dimensions"
|
||
|
)
|
||
|
|
||
|
if reverse:
|
||
|
num_input_fmaps, num_output_fmaps = tensor.shape[0], tensor.shape[1]
|
||
|
else:
|
||
|
num_input_fmaps, num_output_fmaps = tensor.shape[1], tensor.shape[0]
|
||
|
|
||
|
receptive_field_size = 1
|
||
|
if tensor.ndim > 2:
|
||
|
receptive_field_size = np.prod(tensor.shape[2:])
|
||
|
|
||
|
fan_in = num_input_fmaps * receptive_field_size
|
||
|
fan_out = num_output_fmaps * receptive_field_size
|
||
|
|
||
|
return fan_in, fan_out
|
||
|
|
||
|
|
||
|
def xavier_uniform_(tensor, gain=1.0, reverse=False):
|
||
|
"""
|
||
|
Modified tensor inspace using xavier_uniform_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
gain (float): super parameter, 1. default.
|
||
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
|
||
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
||
|
k = math.sqrt(3.0) * std
|
||
|
return _no_grad_uniform_(tensor, -k, k)
|
||
|
|
||
|
|
||
|
def xavier_normal_(tensor, gain=1.0, reverse=False):
|
||
|
"""
|
||
|
Modified tensor inspace using xavier_normal_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
gain (float): super parameter, 1. default.
|
||
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
|
||
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
||
|
return _no_grad_normal_(tensor, 0, std)
|
||
|
|
||
|
|
||
|
# reference: https://pytorch.org/docs/stable/_modules/torch/nn/init.html
|
||
|
def _calculate_correct_fan(tensor, mode, reverse=False):
|
||
|
mode = mode.lower()
|
||
|
valid_modes = ["fan_in", "fan_out"]
|
||
|
if mode not in valid_modes:
|
||
|
raise ValueError("Mode {} not supported, please use one of {}".format(
|
||
|
mode, valid_modes))
|
||
|
|
||
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse)
|
||
|
|
||
|
return fan_in if mode == "fan_in" else fan_out
|
||
|
|
||
|
|
||
|
def _calculate_gain(nonlinearity, param=None):
|
||
|
linear_fns = [
|
||
|
"linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d",
|
||
|
"conv_transpose2d", "conv_transpose3d"
|
||
|
]
|
||
|
if nonlinearity in linear_fns or nonlinearity == "sigmoid":
|
||
|
return 1
|
||
|
elif nonlinearity == "tanh":
|
||
|
return 5.0 / 3
|
||
|
elif nonlinearity == "relu":
|
||
|
return math.sqrt(2.0)
|
||
|
elif nonlinearity == "leaky_relu":
|
||
|
if param is None:
|
||
|
negative_slope = 0.01
|
||
|
elif not isinstance(param, bool) and isinstance(
|
||
|
param, int) or isinstance(param, float):
|
||
|
# True/False are instances of int, hence check above
|
||
|
negative_slope = param
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"negative_slope {} not a valid number".format(param))
|
||
|
return math.sqrt(2.0 / (1 + negative_slope**2))
|
||
|
elif nonlinearity == "selu":
|
||
|
return 3.0 / 4
|
||
|
else:
|
||
|
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||
|
|
||
|
|
||
|
def kaiming_uniform_(tensor,
|
||
|
a=0,
|
||
|
mode="fan_in",
|
||
|
nonlinearity="leaky_relu",
|
||
|
reverse=False):
|
||
|
"""
|
||
|
Modified tensor inspace using kaiming_uniform method
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
|
||
|
nonlinearity (str): nonlinearity method name
|
||
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
fan = _calculate_correct_fan(tensor, mode, reverse)
|
||
|
gain = _calculate_gain(nonlinearity, a)
|
||
|
std = gain / math.sqrt(fan)
|
||
|
k = math.sqrt(3.0) * std
|
||
|
return _no_grad_uniform_(tensor, -k, k)
|
||
|
|
||
|
|
||
|
def kaiming_normal_(tensor,
|
||
|
a=0,
|
||
|
mode="fan_in",
|
||
|
nonlinearity="leaky_relu",
|
||
|
reverse=False):
|
||
|
"""
|
||
|
Modified tensor inspace using kaiming_normal_
|
||
|
Args:
|
||
|
tensor (paddle.Tensor): paddle Tensor
|
||
|
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
|
||
|
nonlinearity (str): nonlinearity method name
|
||
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
|
||
|
Return:
|
||
|
tensor
|
||
|
"""
|
||
|
fan = _calculate_correct_fan(tensor, mode, reverse)
|
||
|
gain = _calculate_gain(nonlinearity, a)
|
||
|
std = gain / math.sqrt(fan)
|
||
|
return _no_grad_normal_(tensor, 0, std)
|
||
|
|
||
|
|
||
|
def linear_init_(module):
|
||
|
bound = 1 / math.sqrt(module.weight.shape[0])
|
||
|
uniform_(module.weight, -bound, bound)
|
||
|
uniform_(module.bias, -bound, bound)
|
||
|
|
||
|
|
||
|
def conv_init_(module):
|
||
|
bound = 1 / np.sqrt(np.prod(module.weight.shape[1:]))
|
||
|
uniform_(module.weight, -bound, bound)
|
||
|
if module.bias is not None:
|
||
|
uniform_(module.bias, -bound, bound)
|
||
|
|
||
|
|
||
|
def bias_init_with_prob(prior_prob=0.01):
|
||
|
"""initialize conv/fc bias value according to a given probability value."""
|
||
|
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
|
||
|
return bias_init
|
||
|
|
||
|
|
||
|
@paddle.no_grad()
|
||
|
def reset_initialized_parameter(model, include_self=True):
|
||
|
"""
|
||
|
Reset initialized parameter using following method for [conv, linear, embedding, bn]
|
||
|
Args:
|
||
|
model (paddle.Layer): paddle Layer
|
||
|
include_self (bool: False): include_self for Layer.named_sublayers method. Indicate whether including itself
|
||
|
Return:
|
||
|
None
|
||
|
"""
|
||
|
for _, m in model.named_sublayers(include_self=include_self):
|
||
|
if isinstance(m, nn.Conv2D):
|
||
|
k = float(m._groups) / (m._in_channels * m._kernel_size[0] *
|
||
|
m._kernel_size[1])
|
||
|
k = math.sqrt(k)
|
||
|
_no_grad_uniform_(m.weight, -k, k)
|
||
|
if hasattr(m, "bias") and getattr(m, "bias") is not None:
|
||
|
_no_grad_uniform_(m.bias, -k, k)
|
||
|
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
k = math.sqrt(1.0 / m.weight.shape[0])
|
||
|
_no_grad_uniform_(m.weight, -k, k)
|
||
|
if hasattr(m, "bias") and getattr(m, "bias") is not None:
|
||
|
_no_grad_uniform_(m.bias, -k, k)
|
||
|
|
||
|
elif isinstance(m, nn.Embedding):
|
||
|
_no_grad_normal_(m.weight, mean=0.0, std=1.0)
|
||
|
|
||
|
elif isinstance(m, (nn.BatchNorm2D, nn.LayerNorm)):
|
||
|
_no_grad_fill_(m.weight, 1.0)
|
||
|
if hasattr(m, "bias") and getattr(m, "bias") is not None:
|
||
|
_no_grad_fill_(m.bias, 0)
|