You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/text/exps/ernie_linear/train.py

173 lines
5.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
3 years ago
import argparse
import logging
import os
import shutil
from pathlib import Path
import paddle
import yaml
3 years ago
from paddle import DataParallel
from paddle import distributed as dist
3 years ago
from paddle import nn
from paddle.io import DataLoader
from paddle.optimizer import Adam
from paddle.optimizer.lr import ExponentialDecay
from yacs.config import CfgNode
3 years ago
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
from paddlespeech.text.models.ernie_linear import ErnieLinear
from paddlespeech.text.models.ernie_linear import ErnieLinearEvaluator
from paddlespeech.text.models.ernie_linear import ErnieLinearUpdater
from paddlespeech.text.models.ernie_linear import PuncDataset
from paddlespeech.text.models.ernie_linear import PuncDatasetFromErnieTokenizer
3 years ago
DefinedClassifier = {
'ErnieLinear': ErnieLinear,
}
3 years ago
DefinedLoss = {
"ce": nn.CrossEntropyLoss,
}
3 years ago
DefinedDataset = {
'Punc': PuncDataset,
'Ernie': PuncDatasetFromErnieTokenizer,
}
3 years ago
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
3 years ago
paddle.set_device("gpu")
world_size = paddle.distributed.get_world_size()
if world_size > 1:
paddle.distributed.init_parallel_env()
3 years ago
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
1 year ago
f"rank:{dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}"
3 years ago
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
train_dataset = DefinedDataset[config["dataset_type"]](
train_path=config["train_path"], **config["data_params"])
dev_dataset = DefinedDataset[config["dataset_type"]](
train_path=config["dev_path"], **config["data_params"])
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
num_workers=config.num_workers,
batch_size=config.batch_size)
dev_dataloader = DataLoader(
dev_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=False,
num_workers=config.num_workers)
print("dataloaders done!")
model = DefinedClassifier[config["model_type"]](**config["model"])
if world_size > 1:
model = DataParallel(model)
print("model done!")
criterion = DefinedLoss[config["loss_type"]](
**config["loss"]) if "loss_type" in config else DefinedLoss["ce"]()
print("criterions done!")
lr_schedule = ExponentialDecay(**config["scheduler_params"])
optimizer = Adam(
learning_rate=lr_schedule,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config["optimizer_params"]["weight_decay"]))
print("optimizer done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = ErnieLinearUpdater(
model=model,
criterion=criterion,
scheduler=lr_schedule,
optimizer=optimizer,
dataloader=train_dataloader,
output_dir=output_dir)
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
evaluator = ErnieLinearEvaluator(
model=model,
criterion=criterion,
dataloader=dev_dataloader,
output_dir=output_dir)
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
3 years ago
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a ErnieLinear model.")
parser.add_argument("--config", type=str, help="ErnieLinear config file.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
args = parser.parse_args()
3 years ago
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
3 years ago
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
3 years ago
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
3 years ago
if __name__ == "__main__":
main()