|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
from paddlenlp.transformers import ErnieForTokenClassification
|
|
|
|
|
|
|
|
|
|
|
|
class ErnieLinear(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=None,
|
|
|
|
pretrained_token='ernie-1.0',
|
|
|
|
cfg_path=None,
|
|
|
|
ckpt_path=None,
|
|
|
|
**kwargs):
|
|
|
|
super(ErnieLinear, self).__init__()
|
|
|
|
|
|
|
|
if cfg_path is not None and ckpt_path is not None:
|
|
|
|
cfg_path = os.path.abspath(os.path.expanduser(cfg_path))
|
|
|
|
ckpt_path = os.path.abspath(os.path.expanduser(ckpt_path))
|
|
|
|
|
|
|
|
assert os.path.isfile(
|
|
|
|
cfg_path), 'Config file is not valid: {}'.format(cfg_path)
|
|
|
|
assert os.path.isfile(
|
|
|
|
ckpt_path), 'Checkpoint file is not valid: {}'.format(ckpt_path)
|
|
|
|
|
|
|
|
self.ernie = ErnieForTokenClassification.from_pretrained(
|
|
|
|
os.path.dirname(cfg_path))
|
|
|
|
else:
|
|
|
|
assert isinstance(
|
|
|
|
num_classes, int
|
|
|
|
) and num_classes > 0, 'Argument `num_classes` must be an integer.'
|
|
|
|
self.ernie = ErnieForTokenClassification.from_pretrained(
|
|
|
|
pretrained_token, num_labels=num_classes, **kwargs)
|
|
|
|
|
|
|
|
self.num_classes = self.ernie.num_labels
|
|
|
|
self.softmax = nn.Softmax()
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
input_ids,
|
|
|
|
token_type_ids=None,
|
|
|
|
position_ids=None,
|
|
|
|
attention_mask=None):
|
|
|
|
y = self.ernie(
|
|
|
|
input_ids,
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids)
|
|
|
|
|
|
|
|
y = paddle.reshape(y, shape=[-1, self.num_classes])
|
|
|
|
logits = self.softmax(y)
|
|
|
|
|
|
|
|
return y, logits
|