|
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import re
|
|
|
|
from typing import Dict
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import librosa
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from pypinyin import lazy_pinyin
|
|
|
|
|
|
|
|
|
|
|
|
class SingFrontend():
|
|
|
|
def __init__(self, pinyin_phone_path: str, phone_vocab_path: str):
|
|
|
|
"""SVS Frontend
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pinyin_phone_path (str): pinyin to phone file path, a 'pinyin|phones' (like: ba|b a ) pair per line.
|
|
|
|
phone_vocab_path (str): phone to phone id file path, a 'phone phone id' (like: a 4 ) pair per line.
|
|
|
|
"""
|
|
|
|
self.punc = '[、:,;。?!“”‘’\':,;.?!]'
|
|
|
|
|
|
|
|
self.pinyin_phones = {'AP': 'AP', 'SP': 'SP'}
|
|
|
|
if pinyin_phone_path:
|
|
|
|
with open(pinyin_phone_path, 'rt', encoding='utf-8') as f:
|
|
|
|
for line in f.readlines():
|
|
|
|
pinyin_phn = [
|
|
|
|
x.strip() for x in line.split('|') if x.strip() != ''
|
|
|
|
]
|
|
|
|
self.pinyin_phones[pinyin_phn[0]] = pinyin_phn[1]
|
|
|
|
|
|
|
|
self.vocab_phones = {}
|
|
|
|
if phone_vocab_path:
|
|
|
|
with open(phone_vocab_path, 'rt', encoding='utf-8') as f:
|
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
for phn, id in phn_id:
|
|
|
|
self.vocab_phones[phn] = int(id)
|
|
|
|
|
|
|
|
def get_phones(self, sentence: str) -> List[int]:
|
|
|
|
"""get phone list
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sentence (str): sentence
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[int]: phones list
|
|
|
|
|
|
|
|
Example:
|
|
|
|
sentence = "你好"
|
|
|
|
phones = ['n i', 'h ao']
|
|
|
|
"""
|
|
|
|
# remove all punc
|
|
|
|
sentence = re.sub(self.punc, "", sentence)
|
|
|
|
|
|
|
|
# Pypinyin can't solve polyphonic words
|
|
|
|
sentence = sentence.replace('最长', '最常').replace('长睫毛', '常睫毛') \
|
|
|
|
.replace('那么长', '那么常').replace('多长', '多常') \
|
|
|
|
.replace('很长', '很常')
|
|
|
|
|
|
|
|
# lyric
|
|
|
|
pinyins = lazy_pinyin(sentence, strict=False)
|
|
|
|
# replace unk word with SP
|
|
|
|
pinyins = [
|
|
|
|
pinyin if pinyin in self.pinyin_phones.keys() else "SP"
|
|
|
|
for pinyin in pinyins
|
|
|
|
]
|
|
|
|
phones = [
|
|
|
|
self.pinyin_phones[pinyin.strip()] for pinyin in pinyins
|
|
|
|
if pinyin.strip() in self.pinyin_phones
|
|
|
|
]
|
|
|
|
|
|
|
|
return phones
|
|
|
|
|
|
|
|
def get_note_info(self, note_info: str) -> List[str]:
|
|
|
|
note_info = [x.strip() for x in note_info.split('|') if x.strip() != '']
|
|
|
|
return note_info
|
|
|
|
|
|
|
|
def process(
|
|
|
|
self,
|
|
|
|
phones: List[int],
|
|
|
|
notes: List[str],
|
|
|
|
note_durs: List[float], ) -> Dict[str, List[paddle.Tensor]]:
|
|
|
|
new_phones = []
|
|
|
|
new_notes = []
|
|
|
|
new_note_durs = []
|
|
|
|
is_slurs = []
|
|
|
|
assert len(phones) == len(notes) == len(
|
|
|
|
note_durs
|
|
|
|
), "Please check the input, text, notes, note_durs should be the same length."
|
|
|
|
for i in range(len(phones)):
|
|
|
|
phone = phones[i].split()
|
|
|
|
note = notes[i].split()
|
|
|
|
note_dur = note_durs[i].split()
|
|
|
|
|
|
|
|
for phn in phone:
|
|
|
|
new_phones.append(phn)
|
|
|
|
new_notes.append(note[0])
|
|
|
|
new_note_durs.append(note_dur[0])
|
|
|
|
is_slurs.append(0)
|
|
|
|
|
|
|
|
if len(note) > 1:
|
|
|
|
for i in range(1, len(note)):
|
|
|
|
new_phones.append(phone[-1])
|
|
|
|
new_notes.append(note[i])
|
|
|
|
new_note_durs.append(note_dur[i])
|
|
|
|
is_slurs.append(1)
|
|
|
|
|
|
|
|
return new_phones, new_notes, new_note_durs, is_slurs
|
|
|
|
|
|
|
|
def get_input_ids(self, svs_input: Dict[str, str],
|
|
|
|
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
|
|
|
|
"""convert input to int/float.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
svs_input (Dict[str, str]): include keys: if input_type is phones, phones, notes, note_durs and is_slurs are needed.
|
|
|
|
if input_type is word, text, notes, and note_durs sre needed.
|
|
|
|
to_tensor (bool, optional): whether to convert to Tensor. Defaults to True.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Dict[str, List[paddle.Tensor]]: result include phone_ids, note_ids, note_durs, is_slurs.
|
|
|
|
"""
|
|
|
|
result = {}
|
|
|
|
input_type = svs_input['input_type']
|
|
|
|
if input_type == 'phoneme':
|
|
|
|
assert "phones" in svs_input.keys() and "notes" in svs_input.keys() and "note_durs" in svs_input.keys() and "is_slurs" in svs_input.keys(), \
|
|
|
|
"When input_type is phoneme, phones, notes, note_durs, is_slurs should be in the svs_input."
|
|
|
|
phones = svs_input["phones"].split()
|
|
|
|
notes = svs_input["notes"].split()
|
|
|
|
note_durs = svs_input["note_durs"].split()
|
|
|
|
is_slurs = svs_input["is_slurs"].split()
|
|
|
|
assert len(phones) == len(notes) == len(note_durs) == len(
|
|
|
|
is_slurs
|
|
|
|
), "Please check the input, phones, notes, note_durs is_slurs should be the same length."
|
|
|
|
elif input_type == "word":
|
|
|
|
assert "text" in svs_input.keys() and "notes" in svs_input.keys() and "note_durs" in svs_input.keys(), \
|
|
|
|
"When input_type is word, text, notes, note_durs, should be in the svs_input."
|
|
|
|
phones = self.get_phones(svs_input['text'])
|
|
|
|
notes = self.get_note_info(svs_input['notes'])
|
|
|
|
note_durs = self.get_note_info(svs_input['note_durs'])
|
|
|
|
phones, notes, note_durs, is_slurs = self.process(
|
|
|
|
phones=phones, notes=notes, note_durs=note_durs)
|
|
|
|
|
|
|
|
phone_ids = [self.vocab_phones[phn] for phn in phones]
|
|
|
|
phone_ids = np.array(phone_ids, np.int64)
|
|
|
|
note_ids = [
|
|
|
|
librosa.note_to_midi(note.split("/")[0]) if note != 'rest' else 0
|
|
|
|
for note in notes
|
|
|
|
]
|
|
|
|
note_ids = np.array(note_ids, np.int64)
|
|
|
|
note_durs = np.array(note_durs, np.float32)
|
|
|
|
is_slurs = np.array(is_slurs, np.int64)
|
|
|
|
|
|
|
|
if to_tensor:
|
|
|
|
phone_ids = paddle.to_tensor(phone_ids)
|
|
|
|
note_ids = paddle.to_tensor(note_ids)
|
|
|
|
note_durs = paddle.to_tensor(note_durs)
|
|
|
|
is_slurs = paddle.to_tensor(is_slurs)
|
|
|
|
|
|
|
|
result['phone_ids'] = [phone_ids]
|
|
|
|
result['note_ids'] = [note_ids]
|
|
|
|
result['note_durs'] = [note_durs]
|
|
|
|
result['is_slurs'] = [is_slurs]
|
|
|
|
|
|
|
|
return result
|