|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
"""
|
|
|
|
|
A phonology system with ARPABET symbols and limited punctuations. The G2P
|
|
|
|
|
conversion is done by g2p_en.
|
|
|
|
|
|
|
|
|
|
Note that g2p_en does not handle words with hypen well. So make sure the input
|
|
|
|
|
sentence is first normalized.
|
|
|
|
|
"""
|
|
|
|
|
from g2p_en import G2p
|
|
|
|
|
|
|
|
|
|
from paddlespeech.t2s.frontend.phonectic import Phonetics
|
|
|
|
|
from paddlespeech.t2s.frontend.vocab import Vocab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ARPABET(Phonetics):
|
|
|
|
|
"""A phonology for English that uses ARPABET without stress as the phoneme vocabulary.
|
|
|
|
|
|
|
|
|
|
47 symbols = 39 phones + 4 punctuations + 4 special tokens(<pad> <unk> <s> </s>)
|
|
|
|
|
|
|
|
|
|
The current phoneme set contains 39 phonemes, vowels carry a lexical stress marker:
|
|
|
|
|
0 — No stress
|
|
|
|
|
1 — Primary stress
|
|
|
|
|
2 — Secondary stress
|
|
|
|
|
|
|
|
|
|
Phoneme Set:
|
|
|
|
|
Phoneme Example Translation
|
|
|
|
|
------- ------- -----------
|
|
|
|
|
AA odd AA D
|
|
|
|
|
AE at AE T
|
|
|
|
|
AH hut HH AH T
|
|
|
|
|
AO ought AO T
|
|
|
|
|
AW cow K AW
|
|
|
|
|
AY hide HH AY D
|
|
|
|
|
B be B IY
|
|
|
|
|
CH cheese CH IY Z
|
|
|
|
|
D dee D IY
|
|
|
|
|
DH thee DH IY
|
|
|
|
|
EH Ed EH D
|
|
|
|
|
ER hurt HH ER T
|
|
|
|
|
EY ate EY T
|
|
|
|
|
F fee F IY
|
|
|
|
|
G green G R IY N
|
|
|
|
|
HH he HH IY
|
|
|
|
|
IH it IH T
|
|
|
|
|
IY eat IY T
|
|
|
|
|
JH gee JH IY
|
|
|
|
|
K key K IY
|
|
|
|
|
L lee L IY
|
|
|
|
|
M me M IY
|
|
|
|
|
N knee N IY
|
|
|
|
|
NG ping P IH NG
|
|
|
|
|
OW oat OW T
|
|
|
|
|
OY toy T OY
|
|
|
|
|
P pee P IY
|
|
|
|
|
R read R IY D
|
|
|
|
|
S sea S IY
|
|
|
|
|
SH she SH IY
|
|
|
|
|
T tea T IY
|
|
|
|
|
TH theta TH EY T AH
|
|
|
|
|
UH hood HH UH D
|
|
|
|
|
UW two T UW
|
|
|
|
|
V vee V IY
|
|
|
|
|
W we W IY
|
|
|
|
|
Y yield Y IY L D
|
|
|
|
|
Z zee Z IY
|
|
|
|
|
ZH seizure S IY ZH ER
|
|
|
|
|
|
|
|
|
|
See http://www.speech.cs.cmu.edu/cgi-bin/cmudict for more details.
|
|
|
|
|
"""
|
|
|
|
|
# 39 phonemes
|
|
|
|
|
phonemes = [
|
|
|
|
|
'AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'B', 'CH', 'D', 'DH', 'EH', 'ER',
|
|
|
|
|
'EY', 'F', 'G', 'HH', 'IH', 'IY', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW',
|
|
|
|
|
'OY', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UW', 'UH', 'V', 'W', 'Y', 'Z',
|
|
|
|
|
'ZH'
|
|
|
|
|
]
|
|
|
|
|
punctuations = [',', '.', '?', '!']
|
|
|
|
|
symbols = phonemes + punctuations
|
|
|
|
|
# vowels carry a lexical stress marker:
|
|
|
|
|
# 0 unstressed(无重音), 1 primary stress(主重音)和 2 secondary stress(次重音)
|
|
|
|
|
_stress_to_no_stress_ = {
|
|
|
|
|
'AA0': 'AA',
|
|
|
|
|
'AA1': 'AA',
|
|
|
|
|
'AA2': 'AA',
|
|
|
|
|
'AE0': 'AE',
|
|
|
|
|
'AE1': 'AE',
|
|
|
|
|
'AE2': 'AE',
|
|
|
|
|
'AH0': 'AH',
|
|
|
|
|
'AH1': 'AH',
|
|
|
|
|
'AH2': 'AH',
|
|
|
|
|
'AO0': 'AO',
|
|
|
|
|
'AO1': 'AO',
|
|
|
|
|
'AO2': 'AO',
|
|
|
|
|
'AW0': 'AW',
|
|
|
|
|
'AW1': 'AW',
|
|
|
|
|
'AW2': 'AW',
|
|
|
|
|
'AY0': 'AY',
|
|
|
|
|
'AY1': 'AY',
|
|
|
|
|
'AY2': 'AY',
|
|
|
|
|
'EH0': 'EH',
|
|
|
|
|
'EH1': 'EH',
|
|
|
|
|
'EH2': 'EH',
|
|
|
|
|
'ER0': 'ER',
|
|
|
|
|
'ER1': 'ER',
|
|
|
|
|
'ER2': 'ER',
|
|
|
|
|
'EY0': 'EY',
|
|
|
|
|
'EY1': 'EY',
|
|
|
|
|
'EY2': 'EY',
|
|
|
|
|
'IH0': 'IH',
|
|
|
|
|
'IH1': 'IH',
|
|
|
|
|
'IH2': 'IH',
|
|
|
|
|
'IY0': 'IY',
|
|
|
|
|
'IY1': 'IY',
|
|
|
|
|
'IY2': 'IY',
|
|
|
|
|
'OW0': 'OW',
|
|
|
|
|
'OW1': 'OW',
|
|
|
|
|
'OW2': 'OW',
|
|
|
|
|
'OY0': 'OY',
|
|
|
|
|
'OY1': 'OY',
|
|
|
|
|
'OY2': 'OY',
|
|
|
|
|
'UH0': 'UH',
|
|
|
|
|
'UH1': 'UH',
|
|
|
|
|
'UH2': 'UH',
|
|
|
|
|
'UW0': 'UW',
|
|
|
|
|
'UW1': 'UW',
|
|
|
|
|
'UW2': 'UW'
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
fmt = "ARPABETWithoutStress(phonemes: {}, punctuations: {})"
|
|
|
|
|
return fmt.format(len(phonemes), punctuations)
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
# https://github.com/Kyubyong/g2p/blob/master/g2p_en/g2p.py
|
|
|
|
|
self.backend = G2p()
|
|
|
|
|
self.vocab = Vocab(self.phonemes + self.punctuations)
|
|
|
|
|
|
|
|
|
|
def _remove_vowels(self, phone):
|
|
|
|
|
return self._stress_to_no_stress_.get(phone, phone)
|
|
|
|
|
|
|
|
|
|
def phoneticize(self, sentence, add_start_end=False):
|
|
|
|
|
""" Normalize the input text sequence and convert it into pronunciation sequence.
|
|
|
|
|
Args:
|
|
|
|
|
sentence (str): The input text sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]: The list of pronunciation sequence.
|
|
|
|
|
"""
|
|
|
|
|
# g2p and remove vowel stress
|
|
|
|
|
phonemes = [
|
|
|
|
|
self._remove_vowels(item) for item in self.backend(sentence)
|
|
|
|
|
]
|
|
|
|
|
if add_start_end:
|
|
|
|
|
start = self.vocab.start_symbol
|
|
|
|
|
end = self.vocab.end_symbol
|
|
|
|
|
phonemes = [start] + phonemes + [end]
|
|
|
|
|
phonemes = [item for item in phonemes if item in self.vocab.stoi]
|
|
|
|
|
return phonemes
|
|
|
|
|
|
|
|
|
|
def numericalize(self, phonemes):
|
|
|
|
|
""" Convert pronunciation sequence into pronunciation id sequence.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
phonemes (List[str]): The list of pronunciation sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[int]: The list of pronunciation id sequence.
|
|
|
|
|
"""
|
|
|
|
|
# phonemes to ids
|
|
|
|
|
ids = [self.vocab.lookup(item) for item in phonemes]
|
|
|
|
|
return ids
|
|
|
|
|
|
|
|
|
|
def reverse(self, ids):
|
|
|
|
|
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
ids( List[int]): The list of pronunciation id sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]:
|
|
|
|
|
The list of pronunciation sequence.
|
|
|
|
|
"""
|
|
|
|
|
return [self.vocab.reverse(i) for i in ids]
|
|
|
|
|
|
|
|
|
|
def __call__(self, sentence, add_start_end=False):
|
|
|
|
|
""" Convert the input text sequence into pronunciation id sequence.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
sentence (str): The input text sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]: The list of pronunciation id sequence.
|
|
|
|
|
"""
|
|
|
|
|
return self.numericalize(
|
|
|
|
|
self.phoneticize(sentence, add_start_end=add_start_end))
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def vocab_size(self):
|
|
|
|
|
""" Vocab size.
|
|
|
|
|
"""
|
|
|
|
|
# 47 = 39 phones + 4 punctuations + 4 special tokens(<pad> <unk> <s> </s>)
|
|
|
|
|
return len(self.vocab)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ARPABETWithStress(Phonetics):
|
|
|
|
|
"""
|
|
|
|
|
A phonology for English that uses ARPABET with stress as the phoneme vocabulary.
|
|
|
|
|
|
|
|
|
|
77 symbols = 69 phones + 4 punctuations + 4 special tokens
|
|
|
|
|
"""
|
|
|
|
|
phonemes = [
|
|
|
|
|
'AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
|
|
|
|
|
'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH', 'D',
|
|
|
|
|
'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1', 'EY2',
|
|
|
|
|
'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2', 'JH', 'K',
|
|
|
|
|
'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0', 'OY1', 'OY2', 'P', 'R',
|
|
|
|
|
'S', 'SH', 'T', 'TH', 'UH0', 'UH1', 'UH2', 'UW0', 'UW1', 'UW2', 'V',
|
|
|
|
|
'W', 'Y', 'Z', 'ZH'
|
|
|
|
|
]
|
|
|
|
|
punctuations = [',', '.', '?', '!']
|
|
|
|
|
symbols = phonemes + punctuations
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
fmt = "ARPABETWithStress(phonemes: {}, punctuations: {})"
|
|
|
|
|
return fmt.format(len(phonemes), punctuations)
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
self.backend = G2p()
|
|
|
|
|
self.vocab = Vocab(self.phonemes + self.punctuations)
|
|
|
|
|
|
|
|
|
|
def phoneticize(self, sentence, add_start_end=False):
|
|
|
|
|
""" Normalize the input text sequence and convert it into pronunciation sequence.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
sentence (str): The input text sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]: The list of pronunciation sequence.
|
|
|
|
|
"""
|
|
|
|
|
phonemes = self.backend(sentence)
|
|
|
|
|
if add_start_end:
|
|
|
|
|
start = self.vocab.start_symbol
|
|
|
|
|
end = self.vocab.end_symbol
|
|
|
|
|
phonemes = [start] + phonemes + [end]
|
|
|
|
|
phonemes = [item for item in phonemes if item in self.vocab.stoi]
|
|
|
|
|
return phonemes
|
|
|
|
|
|
|
|
|
|
def numericalize(self, phonemes):
|
|
|
|
|
""" Convert pronunciation sequence into pronunciation id sequence.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
phonemes (List[str]): The list of pronunciation sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[int]: The list of pronunciation id sequence.
|
|
|
|
|
"""
|
|
|
|
|
ids = [self.vocab.lookup(item) for item in phonemes]
|
|
|
|
|
return ids
|
|
|
|
|
|
|
|
|
|
def reverse(self, ids):
|
|
|
|
|
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
|
|
|
|
|
Args:
|
|
|
|
|
ids (List[int]): The list of pronunciation id sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]: The list of pronunciation sequence.
|
|
|
|
|
"""
|
|
|
|
|
return [self.vocab.reverse(i) for i in ids]
|
|
|
|
|
|
|
|
|
|
def __call__(self, sentence, add_start_end=False):
|
|
|
|
|
""" Convert the input text sequence into pronunciation id sequence.
|
|
|
|
|
Args:
|
|
|
|
|
sentence (str): The input text sequence.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[str]: The list of pronunciation id sequence.
|
|
|
|
|
"""
|
|
|
|
|
return self.numericalize(
|
|
|
|
|
self.phoneticize(sentence, add_start_end=add_start_end))
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def vocab_size(self):
|
|
|
|
|
""" Vocab size.
|
|
|
|
|
"""
|
|
|
|
|
# 77 = 69 phones + 4 punctuations + 4 special tokens
|
|
|
|
|
return len(self.vocab)
|