|
|
|
import math
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from paddle.io import BatchSampler
|
|
|
|
|
|
|
|
|
|
|
|
class ErnieSATSampler(BatchSampler):
|
|
|
|
"""Sampler that restricts data loading to a subset of the dataset.
|
|
|
|
In such case, each process can pass a DistributedBatchSampler instance
|
|
|
|
as a DataLoader sampler, and load a subset of the original dataset that
|
|
|
|
is exclusive to it.
|
|
|
|
.. note::
|
|
|
|
Dataset is assumed to be of constant size.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
|
|
|
|
or other python object which implemented
|
|
|
|
`__len__` for BatchSampler to get sample
|
|
|
|
number of data source.
|
|
|
|
batch_size(int): sample indice number in a mini-batch indices.
|
|
|
|
num_replicas(int, optional): porcess number in distributed training.
|
|
|
|
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
|
|
|
|
retrieved from :code:`paddle.distributed.ParallenEnv`.
|
|
|
|
Default None.
|
|
|
|
rank(int, optional): the rank of the current process among :attr:`num_replicas`
|
|
|
|
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
|
|
|
|
:code:`paddle.distributed.ParallenEnv`. Default None.
|
|
|
|
shuffle(bool): whther to shuffle indices order before genrating
|
|
|
|
batch indices. Default False.
|
|
|
|
drop_last(bool): whether drop the last incomplete batch dataset size
|
|
|
|
is not divisible by the batch size. Default False
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
|
|
from paddle.io import Dataset, DistributedBatchSampler
|
|
|
|
# init with dataset
|
|
|
|
class RandomDataset(Dataset):
|
|
|
|
def __init__(self, num_samples):
|
|
|
|
self.num_samples = num_samples
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
image = np.random.random([784]).astype('float32')
|
|
|
|
label = np.random.randint(0, 9, (1, )).astype('int64')
|
|
|
|
return image, label
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
dataset = RandomDataset(100)
|
|
|
|
sampler = DistributedBatchSampler(dataset, batch_size=64)
|
|
|
|
for data in sampler:
|
|
|
|
# do something
|
|
|
|
break
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
dataset,
|
|
|
|
batch_size,
|
|
|
|
num_replicas=None,
|
|
|
|
rank=None,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False):
|
|
|
|
self.dataset = dataset
|
|
|
|
|
|
|
|
assert isinstance(batch_size, int) and batch_size > 0, \
|
|
|
|
"batch_size should be a positive integer"
|
|
|
|
self.batch_size = batch_size
|
|
|
|
assert isinstance(shuffle, bool), \
|
|
|
|
"shuffle should be a boolean value"
|
|
|
|
self.shuffle = shuffle
|
|
|
|
assert isinstance(drop_last, bool), \
|
|
|
|
"drop_last should be a boolean number"
|
|
|
|
|
|
|
|
from paddle.distributed import ParallelEnv
|
|
|
|
|
|
|
|
if num_replicas is not None:
|
|
|
|
assert isinstance(num_replicas, int) and num_replicas > 0, \
|
|
|
|
"num_replicas should be a positive integer"
|
|
|
|
self.nranks = num_replicas
|
|
|
|
else:
|
|
|
|
self.nranks = ParallelEnv().nranks
|
|
|
|
|
|
|
|
if rank is not None:
|
|
|
|
assert isinstance(rank, int) and rank >= 0, \
|
|
|
|
"rank should be a non-negative integer"
|
|
|
|
self.local_rank = rank
|
|
|
|
else:
|
|
|
|
self.local_rank = ParallelEnv().local_rank
|
|
|
|
|
|
|
|
self.drop_last = drop_last
|
|
|
|
self.epoch = 0
|
|
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
|
|
|
|
self.total_size = self.num_samples * self.nranks
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
num_samples = len(self.dataset)
|
|
|
|
indices = np.arange(num_samples).tolist()
|
|
|
|
indices += indices[:(self.total_size - len(indices))]
|
|
|
|
assert len(indices) == self.total_size
|
|
|
|
|
|
|
|
# subsample
|
|
|
|
def _get_indices_by_batch_size(indices):
|
|
|
|
subsampled_indices = []
|
|
|
|
last_batch_size = self.total_size % (self.batch_size * self.nranks)
|
|
|
|
assert last_batch_size % self.nranks == 0
|
|
|
|
last_local_batch_size = last_batch_size // self.nranks
|
|
|
|
|
|
|
|
for i in range(self.local_rank * self.batch_size,
|
|
|
|
len(indices) - last_batch_size,
|
|
|
|
self.batch_size * self.nranks):
|
|
|
|
subsampled_indices.extend(indices[i:i + self.batch_size])
|
|
|
|
|
|
|
|
indices = indices[len(indices) - last_batch_size:]
|
|
|
|
subsampled_indices.extend(
|
|
|
|
indices[self.local_rank * last_local_batch_size:(
|
|
|
|
self.local_rank + 1) * last_local_batch_size])
|
|
|
|
return subsampled_indices
|
|
|
|
|
|
|
|
if self.nranks > 1:
|
|
|
|
indices = _get_indices_by_batch_size(indices)
|
|
|
|
|
|
|
|
assert len(indices) == self.num_samples
|
|
|
|
_sample_iter = iter(indices)
|
|
|
|
|
|
|
|
batch_indices_list = []
|
|
|
|
batch_indices = []
|
|
|
|
for idx in _sample_iter:
|
|
|
|
batch_indices.append(idx)
|
|
|
|
if len(batch_indices) == self.batch_size:
|
|
|
|
batch_indices_list.append(batch_indices)
|
|
|
|
batch_indices = []
|
|
|
|
if not self.drop_last and len(batch_indices) > 0:
|
|
|
|
batch_indices_list.append(batch_indices)
|
|
|
|
|
|
|
|
if self.shuffle:
|
|
|
|
np.random.RandomState(self.epoch).shuffle(batch_indices_list)
|
|
|
|
self.epoch += 1
|
|
|
|
|
|
|
|
for batch_indices in batch_indices_list:
|
|
|
|
yield batch_indices
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
num_samples = self.num_samples
|
|
|
|
num_samples += int(not self.drop_last) * (self.batch_size - 1)
|
|
|
|
return num_samples // self.batch_size
|
|
|
|
|
|
|
|
def set_epoch(self, epoch):
|
|
|
|
"""
|
|
|
|
Sets the epoch number. When :attr:`shuffle=True`, this number is used
|
|
|
|
as seeds of random numbers. By default, users may not set this, all
|
|
|
|
replicas (workers) use a different random ordering for each epoch.
|
|
|
|
If set same number at each epoch, this sampler will yield the same
|
|
|
|
ordering at all epoches.
|
|
|
|
Arguments:
|
|
|
|
epoch (int): Epoch number.
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from paddle.io import Dataset, DistributedBatchSampler
|
|
|
|
|
|
|
|
# init with dataset
|
|
|
|
class RandomDataset(Dataset):
|
|
|
|
def __init__(self, num_samples):
|
|
|
|
self.num_samples = num_samples
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
image = np.random.random([784]).astype('float32')
|
|
|
|
label = np.random.randint(0, 9, (1, )).astype('int64')
|
|
|
|
return image, label
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples
|
|
|
|
|
|
|
|
dataset = RandomDataset(100)
|
|
|
|
sampler = DistributedBatchSampler(dataset, batch_size=64)
|
|
|
|
|
|
|
|
for epoch in range(10):
|
|
|
|
sampler.set_epoch(epoch)
|
|
|
|
"""
|
|
|
|
self.epoch = epoch
|