|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Unility functions for Transformer."""
|
|
|
|
from typing import List
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
from .log import Logger
|
|
|
|
|
|
|
|
__all__ = ["pad_sequence", "add_sos_eos", "th_accuracy", "has_tensor"]
|
|
|
|
|
|
|
|
logger = Logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def has_tensor(val):
|
|
|
|
if isinstance(val, (list, tuple)):
|
|
|
|
for item in val:
|
|
|
|
if has_tensor(item):
|
|
|
|
return True
|
|
|
|
elif isinstance(val, dict):
|
|
|
|
for k, v in val.items():
|
|
|
|
if has_tensor(v):
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return paddle.is_tensor(val)
|
|
|
|
|
|
|
|
|
|
|
|
def pad_sequence(sequences: List[paddle.Tensor],
|
|
|
|
batch_first: bool=False,
|
|
|
|
padding_value: float=0.0) -> paddle.Tensor:
|
|
|
|
r"""Pad a list of variable length Tensors with ``padding_value``
|
|
|
|
|
|
|
|
``pad_sequence`` stacks a list of Tensors along a new dimension,
|
|
|
|
and pads them to equal length. For example, if the input is list of
|
|
|
|
sequences with size ``L x *`` and if batch_first is False, and ``T x B x *``
|
|
|
|
otherwise.
|
|
|
|
|
|
|
|
`B` is batch size. It is equal to the number of elements in ``sequences``.
|
|
|
|
`T` is length of the longest sequence.
|
|
|
|
`L` is length of the sequence.
|
|
|
|
`*` is any number of trailing dimensions, including none.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> from paddle.nn.utils.rnn import pad_sequence
|
|
|
|
>>> a = paddle.ones(25, 300)
|
|
|
|
>>> b = paddle.ones(22, 300)
|
|
|
|
>>> c = paddle.ones(15, 300)
|
|
|
|
>>> pad_sequence([a, b, c]).shape
|
|
|
|
paddle.Tensor([25, 3, 300])
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This function returns a Tensor of size ``T x B x *`` or ``B x T x *``
|
|
|
|
where `T` is the length of the longest sequence. This function assumes
|
|
|
|
trailing dimensions and type of all the Tensors in sequences are same.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sequences (list[Tensor]): list of variable length sequences.
|
|
|
|
batch_first (bool, optional): output will be in ``B x T x *`` if True, or in
|
|
|
|
``T x B x *`` otherwise
|
|
|
|
padding_value (float, optional): value for padded elements. Default: 0.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.
|
|
|
|
Tensor of size ``B x T x *`` otherwise
|
|
|
|
"""
|
|
|
|
|
|
|
|
# assuming trailing dimensions and type of all the Tensors
|
|
|
|
# in sequences are same and fetching those from sequences[0]
|
|
|
|
max_size = paddle.shape(sequences[0])
|
|
|
|
# (TODO Hui Zhang): slice not supprot `end==start`
|
|
|
|
# trailing_dims = max_size[1:]
|
|
|
|
trailing_dims = tuple(
|
|
|
|
max_size[1:].numpy().tolist()) if sequences[0].ndim >= 2 else ()
|
|
|
|
max_len = max([s.shape[0] for s in sequences])
|
|
|
|
if batch_first:
|
|
|
|
out_dims = (len(sequences), max_len) + trailing_dims
|
|
|
|
else:
|
|
|
|
out_dims = (max_len, len(sequences)) + trailing_dims
|
|
|
|
out_tensor = paddle.full(out_dims, padding_value, sequences[0].dtype)
|
|
|
|
for i, tensor in enumerate(sequences):
|
|
|
|
length = tensor.shape[0]
|
|
|
|
# use index notation to prevent duplicate references to the tensor
|
|
|
|
if batch_first:
|
|
|
|
# TODO (Hui Zhang): set_value op not supprot `end==start`
|
|
|
|
# TODO (Hui Zhang): set_value op not support int16
|
|
|
|
# TODO (Hui Zhang): set_varbase 2 rank not support [0,0,...]
|
|
|
|
# out_tensor[i, :length, ...] = tensor
|
|
|
|
if length != 0:
|
|
|
|
out_tensor[i, :length] = tensor
|
|
|
|
else:
|
|
|
|
out_tensor[i, length] = tensor
|
|
|
|
else:
|
|
|
|
# TODO (Hui Zhang): set_value op not supprot `end==start`
|
|
|
|
# out_tensor[:length, i, ...] = tensor
|
|
|
|
if length != 0:
|
|
|
|
out_tensor[:length, i] = tensor
|
|
|
|
else:
|
|
|
|
out_tensor[length, i] = tensor
|
|
|
|
|
|
|
|
return out_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def add_sos_eos(ys_pad: paddle.Tensor, sos: int, eos: int,
|
|
|
|
ignore_id: int) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
|
|
"""Add <sos> and <eos> labels.
|
|
|
|
Args:
|
|
|
|
ys_pad (paddle.Tensor): batch of padded target sequences (B, Lmax)
|
|
|
|
sos (int): index of <sos>
|
|
|
|
eos (int): index of <eeos>
|
|
|
|
ignore_id (int): index of padding
|
|
|
|
Returns:
|
|
|
|
ys_in (paddle.Tensor) : (B, Lmax + 1)
|
|
|
|
ys_out (paddle.Tensor) : (B, Lmax + 1)
|
|
|
|
Examples:
|
|
|
|
>>> sos_id = 10
|
|
|
|
>>> eos_id = 11
|
|
|
|
>>> ignore_id = -1
|
|
|
|
>>> ys_pad
|
|
|
|
tensor([[ 1, 2, 3, 4, 5],
|
|
|
|
[ 4, 5, 6, -1, -1],
|
|
|
|
[ 7, 8, 9, -1, -1]], dtype=paddle.int32)
|
|
|
|
>>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
|
|
|
|
>>> ys_in
|
|
|
|
tensor([[10, 1, 2, 3, 4, 5],
|
|
|
|
[10, 4, 5, 6, 11, 11],
|
|
|
|
[10, 7, 8, 9, 11, 11]])
|
|
|
|
>>> ys_out
|
|
|
|
tensor([[ 1, 2, 3, 4, 5, 11],
|
|
|
|
[ 4, 5, 6, 11, -1, -1],
|
|
|
|
[ 7, 8, 9, 11, -1, -1]])
|
|
|
|
"""
|
|
|
|
# TODO(Hui Zhang): using comment code,
|
|
|
|
# _sos = paddle.to_tensor(
|
|
|
|
# [sos], dtype=ys_pad.dtype, stop_gradient=True, place=ys_pad.place)
|
|
|
|
# _eos = paddle.to_tensor(
|
|
|
|
# [eos], dtype=ys_pad.dtype, stop_gradient=True, place=ys_pad.place)
|
|
|
|
# ys = [y[y != ignore_id] for y in ys_pad] # parse padded ys
|
|
|
|
# ys_in = [paddle.concat([_sos, y], axis=0) for y in ys]
|
|
|
|
# ys_out = [paddle.concat([y, _eos], axis=0) for y in ys]
|
|
|
|
# return pad_sequence(ys_in, padding_value=eos).transpose([1,0]), pad_sequence(ys_out, padding_value=ignore_id).transpose([1,0])
|
|
|
|
|
|
|
|
B = ys_pad.shape[0]
|
|
|
|
_sos = paddle.full([B, 1], sos, dtype=ys_pad.dtype)
|
|
|
|
_eos = paddle.full([B, 1], eos, dtype=ys_pad.dtype)
|
|
|
|
ys_in = paddle.cat([_sos, ys_pad], dim=1)
|
|
|
|
mask_pad = (ys_in == ignore_id)
|
|
|
|
ys_in = ys_in.masked_fill(mask_pad, eos)
|
|
|
|
|
|
|
|
ys_out = paddle.cat([ys_pad, _eos], dim=1)
|
|
|
|
ys_out = ys_out.masked_fill(mask_pad, eos)
|
|
|
|
mask_eos = (ys_out == ignore_id)
|
|
|
|
ys_out = ys_out.masked_fill(mask_eos, eos)
|
|
|
|
ys_out = ys_out.masked_fill(mask_pad, ignore_id)
|
|
|
|
return ys_in, ys_out
|
|
|
|
|
|
|
|
|
|
|
|
def th_accuracy(pad_outputs: paddle.Tensor,
|
|
|
|
pad_targets: paddle.Tensor,
|
|
|
|
ignore_label: int) -> float:
|
|
|
|
"""Calculate accuracy.
|
|
|
|
Args:
|
|
|
|
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
|
|
|
pad_targets (LongTensor): Target label tensors (B, Lmax, D).
|
|
|
|
ignore_label (int): Ignore label id.
|
|
|
|
Returns:
|
|
|
|
float: Accuracy value (0.0 - 1.0).
|
|
|
|
"""
|
|
|
|
pad_pred = pad_outputs.view(pad_targets.shape[0], pad_targets.shape[1],
|
|
|
|
pad_outputs.shape[1]).argmax(2)
|
|
|
|
mask = pad_targets != ignore_label
|
|
|
|
#TODO(Hui Zhang): sum not support bool type
|
|
|
|
# numerator = paddle.sum(
|
|
|
|
# pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
|
|
|
numerator = (
|
|
|
|
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
|
|
|
numerator = paddle.sum(numerator.type_as(pad_targets))
|
|
|
|
#TODO(Hui Zhang): sum not support bool type
|
|
|
|
# denominator = paddle.sum(mask)
|
|
|
|
denominator = paddle.sum(mask.type_as(pad_targets))
|
|
|
|
return float(numerator) / float(denominator)
|
|
|
|
|
|
|
|
|
|
|
|
def reverse_pad_list(ys_pad: paddle.Tensor,
|
|
|
|
ys_lens: paddle.Tensor,
|
|
|
|
pad_value: float=-1.0) -> paddle.Tensor:
|
|
|
|
"""Reverse padding for the list of tensors.
|
|
|
|
Args:
|
|
|
|
ys_pad (tensor): The padded tensor (B, Tokenmax).
|
|
|
|
ys_lens (tensor): The lens of token seqs (B)
|
|
|
|
pad_value (int): Value for padding.
|
|
|
|
Returns:
|
|
|
|
Tensor: Padded tensor (B, Tokenmax).
|
|
|
|
Examples:
|
|
|
|
>>> x
|
|
|
|
tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
|
|
|
|
>>> pad_list(x, 0)
|
|
|
|
tensor([[4, 3, 2, 1],
|
|
|
|
[7, 6, 5, 0],
|
|
|
|
[9, 8, 0, 0]])
|
|
|
|
"""
|
|
|
|
r_ys_pad = pad_sequence([(paddle.flip(y.int()[:i], [0]))
|
|
|
|
for y, i in zip(ys_pad, ys_lens)], True, pad_value)
|
|
|
|
return r_ys_pad
|
|
|
|
|
|
|
|
|
|
|
|
def st_reverse_pad_list(ys_pad: paddle.Tensor,
|
|
|
|
ys_lens: paddle.Tensor,
|
|
|
|
sos: float,
|
|
|
|
eos: float) -> paddle.Tensor:
|
|
|
|
"""Reverse padding for the list of tensors.
|
|
|
|
Args:
|
|
|
|
ys_pad (tensor): The padded tensor (B, Tokenmax).
|
|
|
|
ys_lens (tensor): The lens of token seqs (B)
|
|
|
|
Returns:
|
|
|
|
Tensor: Padded tensor (B, Tokenmax).
|
|
|
|
Examples:
|
|
|
|
>>> x
|
|
|
|
tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
|
|
|
|
>>> pad_list(x, 0)
|
|
|
|
tensor([[4, 3, 2, 1],
|
|
|
|
[7, 6, 5, 0],
|
|
|
|
[9, 8, 0, 0]])
|
|
|
|
"""
|
|
|
|
# Equal to:
|
|
|
|
# >>> r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(self.ignore_id))
|
|
|
|
# >>> r_hyps, _ = add_sos_eos(r_hyps, self.sos, self.eos, self.ignore_id)
|
|
|
|
B = ys_pad.shape[0]
|
|
|
|
_sos = paddle.full([B, 1], sos, dtype=ys_pad.dtype)
|
|
|
|
max_len = paddle.max(ys_lens)
|
|
|
|
index_range = paddle.arange(0, max_len, 1)
|
|
|
|
seq_len_expand = ys_lens.unsqueeze(1)
|
|
|
|
seq_mask = seq_len_expand > index_range # (beam, max_len)
|
|
|
|
|
|
|
|
index = (seq_len_expand - 1) - index_range # (beam, max_len)
|
|
|
|
# >>> index
|
|
|
|
# >>> tensor([[ 2, 1, 0],
|
|
|
|
# >>> [ 2, 1, 0],
|
|
|
|
# >>> [ 0, -1, -2]])
|
|
|
|
index = index * seq_mask
|
|
|
|
|
|
|
|
# >>> index
|
|
|
|
# >>> tensor([[2, 1, 0],
|
|
|
|
# >>> [2, 1, 0],
|
|
|
|
# >>> [0, 0, 0]])
|
|
|
|
def paddle_gather(x, dim, index):
|
|
|
|
index_shape = index.shape
|
|
|
|
index_flatten = index.flatten()
|
|
|
|
if dim < 0:
|
|
|
|
dim = len(x.shape) + dim
|
|
|
|
nd_index = []
|
|
|
|
for k in range(len(x.shape)):
|
|
|
|
if k == dim:
|
|
|
|
nd_index.append(index_flatten)
|
|
|
|
else:
|
|
|
|
reshape_shape = [1] * len(x.shape)
|
|
|
|
reshape_shape[k] = x.shape[k]
|
|
|
|
x_arange = paddle.arange(x.shape[k], dtype=index.dtype)
|
|
|
|
x_arange = x_arange.reshape(reshape_shape)
|
|
|
|
dim_index = paddle.expand(x_arange, index_shape).flatten()
|
|
|
|
nd_index.append(dim_index)
|
|
|
|
ind2 = paddle.transpose(paddle.stack(nd_index), [1, 0]).astype("int64")
|
|
|
|
paddle_out = paddle.gather_nd(x, ind2).reshape(index_shape)
|
|
|
|
return paddle_out
|
|
|
|
|
|
|
|
r_hyps = paddle_gather(ys_pad, 1, index)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[3, 2, 1],
|
|
|
|
# >>> [4, 8, 9],
|
|
|
|
# >>> [2, 2, 2]])
|
|
|
|
_eos = paddle.full([1], eos, dtype=r_hyps.dtype)
|
|
|
|
r_hyps = paddle.where(seq_mask, r_hyps, _eos)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[3, 2, 1],
|
|
|
|
# >>> [4, 8, 9],
|
|
|
|
# >>> [2, eos, eos]])
|
|
|
|
|
|
|
|
r_hyps = paddle.cat([_sos, r_hyps], dim=1)
|
|
|
|
# r_hyps = paddle.concat([hyps[:, 0:1], r_hyps], axis=1)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[sos, 3, 2, 1],
|
|
|
|
# >>> [sos, 4, 8, 9],
|
|
|
|
# >>> [sos, 2, eos, eos]])
|
|
|
|
return r_hyps
|