You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/kws/exps/mdtc/compute_det.py

117 lines
4.5 KiB

3 years ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
3 years ago
# Modified from wekws(https://github.com/wenet-e2e/wekws)
import argparse
3 years ago
import os
3 years ago
import paddle
3 years ago
import yaml
3 years ago
from tqdm import tqdm
3 years ago
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
3 years ago
3 years ago
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--cfg_path", type=str, required=True)
3 years ago
parser.add_argument('--keyword_index', type=int, default=0, help='keyword index')
parser.add_argument('--step', type=float, default=0.01, help='threshold step of trigger score')
3 years ago
parser.add_argument('--window_shift', type=int, default=50, help='window_shift is used to skip the frames after triggered')
args = parser.parse_args()
# yapf: enable
3 years ago
def load_label_and_score(keyword_index: int,
ds: paddle.io.Dataset,
score_file: os.PathLike):
score_table = {} # {utt_id: scores_over_frames}
3 years ago
with open(score_file, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
key = arr[0]
current_keyword = arr[1]
str_list = arr[2:]
3 years ago
if int(current_keyword) == keyword_index:
3 years ago
scores = list(map(float, str_list))
if key not in score_table:
score_table.update({key: scores})
3 years ago
keyword_table = {} # scores of keyword utt_id
filler_table = {} # scores of non-keyword utt_id
3 years ago
filler_duration = 0.0
3 years ago
for key, index, duration in zip(ds.keys, ds.labels, ds.durations):
assert key in score_table
3 years ago
if index == keyword_index:
3 years ago
keyword_table[key] = score_table[key]
else:
filler_table[key] = score_table[key]
filler_duration += duration
3 years ago
return keyword_table, filler_table, filler_duration
3 years ago
if __name__ == '__main__':
args.cfg_path = os.path.abspath(os.path.expanduser(args.cfg_path))
with open(args.cfg_path, 'r') as f:
config = yaml.safe_load(f)
3 years ago
3 years ago
data_conf = config['data']
feat_conf = config['feature']
scoring_conf = config['scoring']
3 years ago
3 years ago
# Dataset
ds_class = dynamic_import(data_conf['dataset'])
test_ds = ds_class(data_dir=data_conf['data_dir'], mode='test', **feat_conf)
3 years ago
3 years ago
score_file = os.path.abspath(scoring_conf['score_file'])
stats_file = os.path.abspath(scoring_conf['stats_file'])
3 years ago
keyword_table, filler_table, filler_duration = load_label_and_score(
3 years ago
args.keyword, test_ds, score_file)
3 years ago
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
pbar = tqdm(total=int(1.0 / args.step))
3 years ago
with open(stats_file, 'w', encoding='utf8') as fout:
3 years ago
keyword_index = args.keyword_index
3 years ago
threshold = 0.0
while threshold <= 1.0:
num_false_reject = 0
# transverse the all keyword_table
for key, score_list in keyword_table.items():
# computer positive test sample, use the max score of list.
score = max(score_list)
if float(score) < threshold:
num_false_reject += 1
num_false_alarm = 0
# transverse the all filler_table
for key, score_list in filler_table.items():
i = 0
while i < len(score_list):
if score_list[i] >= threshold:
num_false_alarm += 1
3 years ago
i += args.window_shift
3 years ago
else:
i += 1
if len(keyword_table) != 0:
false_reject_rate = num_false_reject / len(keyword_table)
num_false_alarm = max(num_false_alarm, 1e-6)
if filler_duration != 0:
false_alarm_per_hour = num_false_alarm / \
(filler_duration / 3600.0)
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(
threshold, false_alarm_per_hour, false_reject_rate))
threshold += args.step
pbar.update(1)
pbar.close()
3 years ago
print('DET saved to: {}'.format(stats_file))