You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
8.8 KiB
239 lines
8.8 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Flow-related transformation.
|
||
|
|
||
|
This code is based on https://github.com/bayesiains/nflows.
|
||
|
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle.nn import functional as F
|
||
|
|
||
|
from paddlespeech.t2s.modules.nets_utils import paddle_gather
|
||
|
|
||
|
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||
|
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||
|
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||
|
|
||
|
|
||
|
def piecewise_rational_quadratic_transform(
|
||
|
inputs,
|
||
|
unnormalized_widths,
|
||
|
unnormalized_heights,
|
||
|
unnormalized_derivatives,
|
||
|
inverse=False,
|
||
|
tails=None,
|
||
|
tail_bound=1.0,
|
||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||
|
min_derivative=DEFAULT_MIN_DERIVATIVE, ):
|
||
|
if tails is None:
|
||
|
spline_fn = rational_quadratic_spline
|
||
|
spline_kwargs = {}
|
||
|
else:
|
||
|
spline_fn = unconstrained_rational_quadratic_spline
|
||
|
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||
|
|
||
|
outputs, logabsdet = spline_fn(
|
||
|
inputs=inputs,
|
||
|
unnormalized_widths=unnormalized_widths,
|
||
|
unnormalized_heights=unnormalized_heights,
|
||
|
unnormalized_derivatives=unnormalized_derivatives,
|
||
|
inverse=inverse,
|
||
|
min_bin_width=min_bin_width,
|
||
|
min_bin_height=min_bin_height,
|
||
|
min_derivative=min_derivative,
|
||
|
**spline_kwargs)
|
||
|
return outputs, logabsdet
|
||
|
|
||
|
|
||
|
def mask_preprocess(x, mask):
|
||
|
B, C, T, bins = paddle.shape(x)
|
||
|
new_x = paddle.zeros([mask.sum(), bins])
|
||
|
for i in range(bins):
|
||
|
new_x[:, i] = x[:, :, :, i][mask]
|
||
|
return new_x
|
||
|
|
||
|
|
||
|
def unconstrained_rational_quadratic_spline(
|
||
|
inputs,
|
||
|
unnormalized_widths,
|
||
|
unnormalized_heights,
|
||
|
unnormalized_derivatives,
|
||
|
inverse=False,
|
||
|
tails="linear",
|
||
|
tail_bound=1.0,
|
||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||
|
min_derivative=DEFAULT_MIN_DERIVATIVE, ):
|
||
|
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||
|
outside_interval_mask = ~inside_interval_mask
|
||
|
|
||
|
outputs = paddle.zeros(paddle.shape(inputs))
|
||
|
logabsdet = paddle.zeros(paddle.shape(inputs))
|
||
|
if tails == "linear":
|
||
|
unnormalized_derivatives = F.pad(
|
||
|
unnormalized_derivatives,
|
||
|
pad=[0] * (len(unnormalized_derivatives.shape) - 1) * 2 + [1, 1])
|
||
|
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||
|
unnormalized_derivatives[..., 0] = constant
|
||
|
unnormalized_derivatives[..., -1] = constant
|
||
|
|
||
|
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||
|
logabsdet[outside_interval_mask] = 0
|
||
|
else:
|
||
|
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||
|
|
||
|
unnormalized_widths = mask_preprocess(unnormalized_widths,
|
||
|
inside_interval_mask)
|
||
|
unnormalized_heights = mask_preprocess(unnormalized_heights,
|
||
|
inside_interval_mask)
|
||
|
unnormalized_derivatives = mask_preprocess(unnormalized_derivatives,
|
||
|
inside_interval_mask)
|
||
|
|
||
|
(outputs[inside_interval_mask],
|
||
|
logabsdet[inside_interval_mask], ) = rational_quadratic_spline(
|
||
|
inputs=inputs[inside_interval_mask],
|
||
|
unnormalized_widths=unnormalized_widths,
|
||
|
unnormalized_heights=unnormalized_heights,
|
||
|
unnormalized_derivatives=unnormalized_derivatives,
|
||
|
inverse=inverse,
|
||
|
left=-tail_bound,
|
||
|
right=tail_bound,
|
||
|
bottom=-tail_bound,
|
||
|
top=tail_bound,
|
||
|
min_bin_width=min_bin_width,
|
||
|
min_bin_height=min_bin_height,
|
||
|
min_derivative=min_derivative, )
|
||
|
|
||
|
return outputs, logabsdet
|
||
|
|
||
|
|
||
|
def rational_quadratic_spline(
|
||
|
inputs,
|
||
|
unnormalized_widths,
|
||
|
unnormalized_heights,
|
||
|
unnormalized_derivatives,
|
||
|
inverse=False,
|
||
|
left=0.0,
|
||
|
right=1.0,
|
||
|
bottom=0.0,
|
||
|
top=1.0,
|
||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||
|
min_derivative=DEFAULT_MIN_DERIVATIVE, ):
|
||
|
if paddle.min(inputs) < left or paddle.max(inputs) > right:
|
||
|
raise ValueError("Input to a transform is not within its domain")
|
||
|
|
||
|
num_bins = unnormalized_widths.shape[-1]
|
||
|
|
||
|
if min_bin_width * num_bins > 1.0:
|
||
|
raise ValueError("Minimal bin width too large for the number of bins")
|
||
|
if min_bin_height * num_bins > 1.0:
|
||
|
raise ValueError("Minimal bin height too large for the number of bins")
|
||
|
|
||
|
widths = F.softmax(unnormalized_widths, axis=-1)
|
||
|
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||
|
cumwidths = paddle.cumsum(widths, axis=-1)
|
||
|
cumwidths = F.pad(
|
||
|
cumwidths,
|
||
|
pad=[0] * (len(cumwidths.shape) - 1) * 2 + [1, 0],
|
||
|
mode="constant",
|
||
|
value=0.0)
|
||
|
cumwidths = (right - left) * cumwidths + left
|
||
|
cumwidths[..., 0] = left
|
||
|
cumwidths[..., -1] = right
|
||
|
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||
|
|
||
|
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||
|
|
||
|
heights = F.softmax(unnormalized_heights, axis=-1)
|
||
|
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||
|
cumheights = paddle.cumsum(heights, axis=-1)
|
||
|
cumheights = F.pad(
|
||
|
cumheights,
|
||
|
pad=[0] * (len(cumheights.shape) - 1) * 2 + [1, 0],
|
||
|
mode="constant",
|
||
|
value=0.0)
|
||
|
cumheights = (top - bottom) * cumheights + bottom
|
||
|
cumheights[..., 0] = bottom
|
||
|
cumheights[..., -1] = top
|
||
|
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||
|
|
||
|
if inverse:
|
||
|
bin_idx = _searchsorted(cumheights, inputs)[..., None]
|
||
|
else:
|
||
|
bin_idx = _searchsorted(cumwidths, inputs)[..., None]
|
||
|
input_cumwidths = paddle_gather(cumwidths, -1, bin_idx)[..., 0]
|
||
|
input_bin_widths = paddle_gather(widths, -1, bin_idx)[..., 0]
|
||
|
|
||
|
input_cumheights = paddle_gather(cumheights, -1, bin_idx)[..., 0]
|
||
|
delta = heights / widths
|
||
|
input_delta = paddle_gather(delta, -1, bin_idx)[..., 0]
|
||
|
|
||
|
input_derivatives = paddle_gather(derivatives, -1, bin_idx)[..., 0]
|
||
|
input_derivatives_plus_one = paddle_gather(derivatives[..., 1:], -1,
|
||
|
bin_idx)[..., 0]
|
||
|
|
||
|
input_heights = paddle_gather(heights, -1, bin_idx)[..., 0]
|
||
|
|
||
|
if inverse:
|
||
|
a = (inputs - input_cumheights) * (
|
||
|
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||
|
) + input_heights * (input_delta - input_derivatives)
|
||
|
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||
|
input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||
|
c = -input_delta * (inputs - input_cumheights)
|
||
|
|
||
|
discriminant = b.pow(2) - 4 * a * c
|
||
|
assert (discriminant >= 0).all()
|
||
|
|
||
|
root = (2 * c) / (-b - paddle.sqrt(discriminant))
|
||
|
outputs = root * input_bin_widths + input_cumwidths
|
||
|
|
||
|
theta_one_minus_theta = root * (1 - root)
|
||
|
denominator = input_delta + (
|
||
|
(input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||
|
) * theta_one_minus_theta)
|
||
|
derivative_numerator = input_delta.pow(2) * (
|
||
|
input_derivatives_plus_one * root.pow(2) + 2 * input_delta *
|
||
|
theta_one_minus_theta + input_derivatives * (1 - root).pow(2))
|
||
|
logabsdet = paddle.log(derivative_numerator) - 2 * paddle.log(
|
||
|
denominator)
|
||
|
|
||
|
return outputs, -logabsdet
|
||
|
else:
|
||
|
theta = (inputs - input_cumwidths) / input_bin_widths
|
||
|
theta_one_minus_theta = theta * (1 - theta)
|
||
|
|
||
|
numerator = input_heights * (input_delta * theta.pow(2) +
|
||
|
input_derivatives * theta_one_minus_theta)
|
||
|
denominator = input_delta + (
|
||
|
(input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||
|
) * theta_one_minus_theta)
|
||
|
outputs = input_cumheights + numerator / denominator
|
||
|
|
||
|
derivative_numerator = input_delta.pow(2) * (
|
||
|
input_derivatives_plus_one * theta.pow(2) + 2 * input_delta *
|
||
|
theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
|
||
|
logabsdet = paddle.log(derivative_numerator) - 2 * paddle.log(
|
||
|
denominator)
|
||
|
|
||
|
return outputs, logabsdet
|
||
|
|
||
|
|
||
|
def _searchsorted(bin_locations, inputs, eps=1e-6):
|
||
|
bin_locations[..., -1] += eps
|
||
|
return paddle.sum(inputs[..., None] >= bin_locations, axis=-1) - 1
|