You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/vits/monotonic_align/__init__.py

95 lines
3.1 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Maximum path calculation module.
This code is based on https://github.com/jaywalnut310/vits.
"""
import warnings
import numpy as np
import paddle
from numba import njit
from numba import prange
try:
from .core import maximum_path_c
is_cython_avalable = True
except ImportError:
is_cython_avalable = False
warnings.warn(
"Cython version is not available. Fallback to 'EXPERIMETAL' numba version. "
"If you want to use the cython version, please build it as follows: "
"`cd paddlespeech/t2s/models/vits/monotonic_align; python setup.py build_ext --inplace`"
)
def maximum_path(neg_x_ent: paddle.Tensor,
attn_mask: paddle.Tensor) -> paddle.Tensor:
"""Calculate maximum path.
Args:
neg_x_ent (Tensor): Negative X entropy tensor (B, T_feats, T_text).
attn_mask (Tensor): Attention mask (B, T_feats, T_text).
Returns:
Tensor: Maximum path tensor (B, T_feats, T_text).
"""
dtype = neg_x_ent.dtype
neg_x_ent = neg_x_ent.numpy().astype(np.float32)
path = np.zeros(neg_x_ent.shape, dtype=np.int32)
t_t_max = attn_mask.sum(1)[:, 0].cpu().numpy().astype(np.int32)
t_s_max = attn_mask.sum(2)[:, 0].cpu().numpy().astype(np.int32)
if is_cython_avalable:
maximum_path_c(path, neg_x_ent, t_t_max, t_s_max)
else:
maximum_path_numba(path, neg_x_ent, t_t_max, t_s_max)
return paddle.cast(paddle.to_tensor(path), dtype=dtype)
@njit
def maximum_path_each_numba(path, value, t_y, t_x, max_neg_val=-np.inf):
"""Calculate a single maximum path with numba."""
index = t_x - 1
for y in range(t_y):
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = value[y - 1, x]
if x == 0:
if y == 0:
v_prev = 0.0
else:
v_prev = max_neg_val
else:
v_prev = value[y - 1, x - 1]
value[y, x] += max(v_prev, v_cur)
for y in range(t_y - 1, -1, -1):
path[y, index] = 1
if index != 0 and (index == y or
value[y - 1, index] < value[y - 1, index - 1]):
index = index - 1
@njit(parallel=True)
def maximum_path_numba(paths, values, t_ys, t_xs):
"""Calculate batch maximum path with numba."""
for i in prange(paths.shape[0]):
maximum_path_each_numba(paths[i], values[i], t_ys[i], t_xs[i])