|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import jsonlines
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import soundfile as sf
|
|
|
|
import yaml
|
|
|
|
from timer import timer
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_am_inference
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_test_dataset
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
|
|
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
|
|
|
|
|
|
def evaluate(args):
|
|
|
|
# dataloader has been too verbose
|
|
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
|
|
|
|
# construct dataset for evaluation
|
|
|
|
with jsonlines.open(args.test_metadata, 'r') as reader:
|
|
|
|
test_metadata = list(reader)
|
|
|
|
|
|
|
|
# Init body.
|
|
|
|
with open(args.am_config) as f:
|
|
|
|
am_config = CfgNode(yaml.safe_load(f))
|
|
|
|
with open(args.voc_config) as f:
|
|
|
|
voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
|
|
|
print("========Args========")
|
|
|
|
print(yaml.safe_dump(vars(args)))
|
|
|
|
print("========Config========")
|
|
|
|
print(am_config)
|
|
|
|
print(voc_config)
|
|
|
|
|
|
|
|
# acoustic model
|
|
|
|
am_name = args.am[:args.am.rindex('_')]
|
|
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
|
|
|
|
|
|
am_inference = get_am_inference(
|
|
|
|
am=args.am,
|
|
|
|
am_config=am_config,
|
|
|
|
am_ckpt=args.am_ckpt,
|
|
|
|
am_stat=args.am_stat,
|
|
|
|
phones_dict=args.phones_dict,
|
|
|
|
tones_dict=args.tones_dict,
|
|
|
|
speaker_dict=args.speaker_dict)
|
|
|
|
test_dataset = get_test_dataset(
|
|
|
|
test_metadata=test_metadata,
|
|
|
|
am=args.am,
|
|
|
|
speaker_dict=args.speaker_dict,
|
|
|
|
voice_cloning=args.voice_cloning)
|
|
|
|
|
|
|
|
# vocoder
|
|
|
|
voc_inference = get_voc_inference(
|
|
|
|
voc=args.voc,
|
|
|
|
voc_config=voc_config,
|
|
|
|
voc_ckpt=args.voc_ckpt,
|
|
|
|
voc_stat=args.voc_stat)
|
|
|
|
|
|
|
|
output_dir = Path(args.output_dir)
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
N = 0
|
|
|
|
T = 0
|
|
|
|
|
|
|
|
for datum in test_dataset:
|
|
|
|
utt_id = datum["utt_id"]
|
|
|
|
with timer() as t:
|
|
|
|
with paddle.no_grad():
|
|
|
|
# acoustic model
|
|
|
|
if am_name == 'fastspeech2':
|
|
|
|
phone_ids = paddle.to_tensor(datum["text"])
|
|
|
|
spk_emb = None
|
|
|
|
spk_id = None
|
|
|
|
# multi speaker
|
|
|
|
if args.voice_cloning and "spk_emb" in datum:
|
|
|
|
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
|
|
|
|
elif "spk_id" in datum:
|
|
|
|
spk_id = paddle.to_tensor(datum["spk_id"])
|
|
|
|
mel = am_inference(
|
|
|
|
phone_ids, spk_id=spk_id, spk_emb=spk_emb)
|
|
|
|
elif am_name == 'speedyspeech':
|
|
|
|
phone_ids = paddle.to_tensor(datum["phones"])
|
|
|
|
tone_ids = paddle.to_tensor(datum["tones"])
|
|
|
|
mel = am_inference(phone_ids, tone_ids)
|
|
|
|
elif am_name == 'tacotron2':
|
|
|
|
phone_ids = paddle.to_tensor(datum["text"])
|
|
|
|
spk_emb = None
|
|
|
|
# multi speaker
|
|
|
|
if args.voice_cloning and "spk_emb" in datum:
|
|
|
|
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
|
|
|
|
mel = am_inference(phone_ids, spk_emb=spk_emb)
|
|
|
|
# vocoder
|
|
|
|
wav = voc_inference(mel)
|
|
|
|
|
|
|
|
wav = wav.numpy()
|
|
|
|
N += wav.size
|
|
|
|
T += t.elapse
|
|
|
|
speed = wav.size / t.elapse
|
|
|
|
rtf = am_config.fs / speed
|
|
|
|
print(
|
|
|
|
f"{utt_id}, mel: {mel.shape}, wave: {wav.size}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
|
|
)
|
|
|
|
sf.write(
|
|
|
|
str(output_dir / (utt_id + ".wav")), wav, samplerate=am_config.fs)
|
|
|
|
print(f"{utt_id} done!")
|
|
|
|
print(f"generation speed: {N / T}Hz, RTF: {am_config.fs / (N / T) }")
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
# parse args and config and redirect to train_sp
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="Synthesize with acoustic model & vocoder")
|
|
|
|
# acoustic model
|
|
|
|
parser.add_argument(
|
|
|
|
'--am',
|
|
|
|
type=str,
|
|
|
|
default='fastspeech2_csmsc',
|
|
|
|
choices=[
|
|
|
|
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech',
|
|
|
|
'fastspeech2_aishell3', 'fastspeech2_vctk', 'tacotron2_csmsc',
|
|
|
|
'tacotron2_ljspeech', 'tacotron2_aishell3'
|
|
|
|
],
|
|
|
|
help='Choose acoustic model type of tts task.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--am_config',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help='Config of acoustic model. Use deault config when it is None.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--am_ckpt',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help='Checkpoint file of acoustic model.')
|
|
|
|
parser.add_argument(
|
|
|
|
"--am_stat",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="mean and standard deviation used to normalize spectrogram when training acoustic model."
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--voice-cloning",
|
|
|
|
type=str2bool,
|
|
|
|
default=False,
|
|
|
|
help="whether training voice cloning model.")
|
|
|
|
# vocoder
|
|
|
|
parser.add_argument(
|
|
|
|
'--voc',
|
|
|
|
type=str,
|
|
|
|
default='pwgan_csmsc',
|
|
|
|
choices=[
|
|
|
|
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
|
|
|
|
'mb_melgan_csmsc', 'wavernn_csmsc', 'hifigan_csmsc',
|
|
|
|
'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk',
|
|
|
|
'style_melgan_csmsc'
|
|
|
|
],
|
|
|
|
help='Choose vocoder type of tts task.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--voc_config',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help='Config of voc. Use deault config when it is None.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
|
|
|
|
parser.add_argument(
|
|
|
|
"--voc_stat",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="mean and standard deviation used to normalize spectrogram when training voc."
|
|
|
|
)
|
|
|
|
# other
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
|
|
parser.add_argument("--test_metadata", type=str, help="test metadata.")
|
|
|
|
parser.add_argument("--output_dir", type=str, help="output dir.")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
args = parse_args()
|
|
|
|
if args.ngpu == 0:
|
|
|
|
paddle.set_device("cpu")
|
|
|
|
elif args.ngpu > 0:
|
|
|
|
paddle.set_device("gpu")
|
|
|
|
else:
|
|
|
|
print("ngpu should >= 0 !")
|
|
|
|
|
|
|
|
evaluate(args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|