You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/utils/cli_readers.py

238 lines
8.3 KiB

import io
import logging
import sys
import h5py
import kaldiio
import soundfile
from deepspeech.io.reader import SoundHDF5File
def file_reader_helper(
rspecifier: str,
filetype: str = "mat",
return_shape: bool = False,
segments: str = None,
):
"""Read uttid and array in kaldi style
This function might be a bit confusing as "ark" is used
for HDF5 to imitate "kaldi-rspecifier".
Args:
rspecifier: Give as "ark:feats.ark" or "scp:feats.scp"
filetype: "mat" is kaldi-martix, "hdf5": HDF5
return_shape: Return the shape of the matrix,
instead of the matrix. This can reduce IO cost for HDF5.
segments (str): The file format is
"<segment-id> <recording-id> <start-time> <end-time>\n"
"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n"
Returns:
Generator[Tuple[str, np.ndarray], None, None]:
Examples:
Read from kaldi-matrix ark file:
>>> for u, array in file_reader_helper('ark:feats.ark', 'mat'):
... array
Read from HDF5 file:
>>> for u, array in file_reader_helper('ark:feats.h5', 'hdf5'):
... array
"""
if filetype == "mat":
return KaldiReader(rspecifier, return_shape=return_shape, segments=segments)
elif filetype == "hdf5":
return HDF5Reader(rspecifier, return_shape=return_shape)
elif filetype == "sound.hdf5":
return SoundHDF5Reader(rspecifier, return_shape=return_shape)
elif filetype == "sound":
return SoundReader(rspecifier, return_shape=return_shape)
else:
raise NotImplementedError(f"filetype={filetype}")
class KaldiReader:
def __init__(self, rspecifier, return_shape=False, segments=None):
self.rspecifier = rspecifier
self.return_shape = return_shape
self.segments = segments
def __iter__(self):
with kaldiio.ReadHelper(self.rspecifier, segments=self.segments) as reader:
for key, array in reader:
if self.return_shape:
array = array.shape
yield key, array
class HDF5Reader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "ark:some.ark: {}"'.format(self.rspecifier)
)
self.rspecifier = rspecifier
self.ark_or_scp, self.filepath = self.rspecifier.split(":", 1)
if self.ark_or_scp not in ["ark", "scp"]:
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
self.return_shape = return_shape
def __iter__(self):
if self.ark_or_scp == "scp":
hdf5_dict = {}
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, value = line.rstrip().split(None, 1)
if ":" not in value:
raise RuntimeError(
"scp file for hdf5 should be like: "
'"uttid filepath.h5:key": {}({})'.format(
line, self.filepath
)
)
path, h5_key = value.split(":", 1)
hdf5_file = hdf5_dict.get(path)
if hdf5_file is None:
try:
hdf5_file = h5py.File(path, "r")
except Exception:
logging.error("Error when loading {}".format(path))
raise
hdf5_dict[path] = hdf5_file
try:
data = hdf5_file[h5_key]
except Exception:
logging.error(
"Error when loading {} with key={}".format(path, h5_key)
)
raise
if self.return_shape:
yield key, data.shape
else:
yield key, data[()]
# Closing all files
for k in hdf5_dict:
try:
hdf5_dict[k].close()
except Exception:
pass
else:
if self.filepath == "-":
# Required h5py>=2.9
filepath = io.BytesIO(sys.stdin.buffer.read())
else:
filepath = self.filepath
with h5py.File(filepath, "r") as f:
for key in f:
if self.return_shape:
yield key, f[key].shape
else:
yield key, f[key][()]
class SoundHDF5Reader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "ark:some.ark: {}"'.format(rspecifier)
)
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
if self.ark_or_scp not in ["ark", "scp"]:
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
self.return_shape = return_shape
def __iter__(self):
if self.ark_or_scp == "scp":
hdf5_dict = {}
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, value = line.rstrip().split(None, 1)
if ":" not in value:
raise RuntimeError(
"scp file for hdf5 should be like: "
'"uttid filepath.h5:key": {}({})'.format(
line, self.filepath
)
)
path, h5_key = value.split(":", 1)
hdf5_file = hdf5_dict.get(path)
if hdf5_file is None:
try:
hdf5_file = SoundHDF5File(path, "r")
except Exception:
logging.error("Error when loading {}".format(path))
raise
hdf5_dict[path] = hdf5_file
try:
data = hdf5_file[h5_key]
except Exception:
logging.error(
"Error when loading {} with key={}".format(path, h5_key)
)
raise
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
# (soundfile style -> scipy style)
array, rate = data
if self.return_shape:
array = array.shape
yield key, (rate, array)
# Closing all files
for k in hdf5_dict:
try:
hdf5_dict[k].close()
except Exception:
pass
else:
if self.filepath == "-":
# Required h5py>=2.9
filepath = io.BytesIO(sys.stdin.buffer.read())
else:
filepath = self.filepath
for key, (a, r) in SoundHDF5File(filepath, "r").items():
if self.return_shape:
a = a.shape
yield key, (r, a)
class SoundReader:
def __init__(self, rspecifier, return_shape=False):
if ":" not in rspecifier:
raise ValueError(
'Give "rspecifier" such as "scp:some.scp: {}"'.format(rspecifier)
)
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
if self.ark_or_scp != "scp":
raise ValueError(
'Only supporting "scp" for sound file: {}'.format(self.ark_or_scp)
)
self.return_shape = return_shape
def __iter__(self):
with open(self.filepath, "r", encoding="utf-8") as f:
for line in f:
key, sound_file_path = line.rstrip().split(None, 1)
# Assume PCM16
array, rate = soundfile.read(sound_file_path, dtype="int16")
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
# (soundfile style -> scipy style)
if self.return_shape:
array = array.shape
yield key, (rate, array)