|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""Transformation module."""
|
|
|
|
import copy
|
|
|
|
import io
|
|
|
|
import logging
|
|
|
|
from collections import OrderedDict
|
|
|
|
from collections.abc import Sequence
|
|
|
|
from inspect import signature
|
|
|
|
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
|
|
|
|
|
import_alias = dict(
|
|
|
|
identity="paddlespeech.s2t.transform.transform_interface:Identity",
|
|
|
|
time_warp="paddlespeech.s2t.transform.spec_augment:TimeWarp",
|
|
|
|
time_mask="paddlespeech.s2t.transform.spec_augment:TimeMask",
|
|
|
|
freq_mask="paddlespeech.s2t.transform.spec_augment:FreqMask",
|
|
|
|
spec_augment="paddlespeech.s2t.transform.spec_augment:SpecAugment",
|
|
|
|
speed_perturbation="paddlespeech.s2t.transform.perturb:SpeedPerturbation",
|
|
|
|
volume_perturbation="paddlespeech.s2t.transform.perturb:VolumePerturbation",
|
|
|
|
noise_injection="paddlespeech.s2t.transform.perturb:NoiseInjection",
|
|
|
|
bandpass_perturbation="paddlespeech.s2t.transform.perturb:BandpassPerturbation",
|
|
|
|
rir_convolve="paddlespeech.s2t.transform.perturb:RIRConvolve",
|
|
|
|
delta="paddlespeech.s2t.transform.add_deltas:AddDeltas",
|
|
|
|
cmvn="paddlespeech.s2t.transform.cmvn:CMVN",
|
|
|
|
utterance_cmvn="paddlespeech.s2t.transform.cmvn:UtteranceCMVN",
|
|
|
|
fbank="paddlespeech.s2t.transform.spectrogram:LogMelSpectrogram",
|
|
|
|
spectrogram="paddlespeech.s2t.transform.spectrogram:Spectrogram",
|
|
|
|
stft="paddlespeech.s2t.transform.spectrogram:Stft",
|
|
|
|
istft="paddlespeech.s2t.transform.spectrogram:IStft",
|
|
|
|
stft2fbank="paddlespeech.s2t.transform.spectrogram:Stft2LogMelSpectrogram",
|
|
|
|
wpe="paddlespeech.s2t.transform.wpe:WPE",
|
|
|
|
channel_selector="paddlespeech.s2t.transform.channel_selector:ChannelSelector",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Transformation():
|
|
|
|
"""Apply some functions to the mini-batch
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> kwargs = {"process": [{"type": "fbank",
|
|
|
|
... "n_mels": 80,
|
|
|
|
... "fs": 16000},
|
|
|
|
... {"type": "cmvn",
|
|
|
|
... "stats": "data/train/cmvn.ark",
|
|
|
|
... "norm_vars": True},
|
|
|
|
... {"type": "delta", "window": 2, "order": 2}]}
|
|
|
|
>>> transform = Transformation(kwargs)
|
|
|
|
>>> bs = 10
|
|
|
|
>>> xs = [np.random.randn(100, 80).astype(np.float32)
|
|
|
|
... for _ in range(bs)]
|
|
|
|
>>> xs = transform(xs)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, conffile=None):
|
|
|
|
if conffile is not None:
|
|
|
|
if isinstance(conffile, dict):
|
|
|
|
self.conf = copy.deepcopy(conffile)
|
|
|
|
else:
|
|
|
|
with io.open(conffile, encoding="utf-8") as f:
|
|
|
|
self.conf = yaml.safe_load(f)
|
|
|
|
assert isinstance(self.conf, dict), type(self.conf)
|
|
|
|
else:
|
|
|
|
self.conf = {"mode": "sequential", "process": []}
|
|
|
|
|
|
|
|
self.functions = OrderedDict()
|
|
|
|
if self.conf.get("mode", "sequential") == "sequential":
|
|
|
|
for idx, process in enumerate(self.conf["process"]):
|
|
|
|
assert isinstance(process, dict), type(process)
|
|
|
|
opts = dict(process)
|
|
|
|
process_type = opts.pop("type")
|
|
|
|
class_obj = dynamic_import(process_type, import_alias)
|
|
|
|
# TODO(karita): assert issubclass(class_obj, TransformInterface)
|
|
|
|
try:
|
|
|
|
self.functions[idx] = class_obj(**opts)
|
|
|
|
except TypeError:
|
|
|
|
try:
|
|
|
|
signa = signature(class_obj)
|
|
|
|
except ValueError:
|
|
|
|
# Some function, e.g. built-in function, are failed
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
logging.error("Expected signature: {}({})".format(
|
|
|
|
class_obj.__name__, signa))
|
|
|
|
raise
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Not supporting mode={}".format(self.conf["mode"]))
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
rep = "\n" + "\n".join(" {}: {}".format(k, v)
|
|
|
|
for k, v in self.functions.items())
|
|
|
|
return "{}({})".format(self.__class__.__name__, rep)
|
|
|
|
|
|
|
|
def __call__(self, xs, uttid_list=None, **kwargs):
|
|
|
|
"""Return new mini-batch
|
|
|
|
|
|
|
|
:param Union[Sequence[np.ndarray], np.ndarray] xs:
|
|
|
|
:param Union[Sequence[str], str] uttid_list:
|
|
|
|
:return: batch:
|
|
|
|
:rtype: List[np.ndarray]
|
|
|
|
"""
|
|
|
|
if not isinstance(xs, Sequence):
|
|
|
|
is_batch = False
|
|
|
|
xs = [xs]
|
|
|
|
else:
|
|
|
|
is_batch = True
|
|
|
|
|
|
|
|
if isinstance(uttid_list, str):
|
|
|
|
uttid_list = [uttid_list for _ in range(len(xs))]
|
|
|
|
|
|
|
|
if self.conf.get("mode", "sequential") == "sequential":
|
|
|
|
for idx in range(len(self.conf["process"])):
|
|
|
|
func = self.functions[idx]
|
|
|
|
# TODO(karita): use TrainingTrans and UttTrans to check __call__ args
|
|
|
|
# Derive only the args which the func has
|
|
|
|
try:
|
|
|
|
param = signature(func).parameters
|
|
|
|
except ValueError:
|
|
|
|
# Some function, e.g. built-in function, are failed
|
|
|
|
param = {}
|
|
|
|
_kwargs = {k: v for k, v in kwargs.items() if k in param}
|
|
|
|
try:
|
|
|
|
if uttid_list is not None and "uttid" in param:
|
|
|
|
xs = [
|
|
|
|
func(x, u, **_kwargs)
|
|
|
|
for x, u in zip(xs, uttid_list)
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
xs = [func(x, **_kwargs) for x in xs]
|
|
|
|
except Exception:
|
|
|
|
logging.fatal("Catch a exception from {}th func: {}".format(
|
|
|
|
idx, func))
|
|
|
|
raise
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Not supporting mode={}".format(self.conf["mode"]))
|
|
|
|
|
|
|
|
if is_batch:
|
|
|
|
return xs
|
|
|
|
else:
|
|
|
|
return xs[0]
|