|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import collections
|
|
|
|
import os
|
|
|
|
import random
|
|
|
|
from typing import List
|
|
|
|
from typing import Tuple
|
|
|
|
|
|
|
|
from ..utils import DATA_HOME
|
|
|
|
from ..utils.download import download_and_decompress
|
|
|
|
from .dataset import AudioClassificationDataset
|
|
|
|
|
|
|
|
__all__ = ['GTZAN']
|
|
|
|
|
|
|
|
|
|
|
|
class GTZAN(AudioClassificationDataset):
|
|
|
|
"""
|
|
|
|
The GTZAN dataset consists of 1000 audio tracks each 30 seconds long. It contains 10 genres,
|
|
|
|
each represented by 100 tracks. The dataset is the most-used public dataset for evaluation
|
|
|
|
in machine listening research for music genre recognition (MGR).
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
Musical genre classification of audio signals
|
|
|
|
https://ieeexplore.ieee.org/document/1021072/
|
|
|
|
"""
|
|
|
|
|
|
|
|
archieves = [
|
|
|
|
{
|
|
|
|
'url': 'http://opihi.cs.uvic.ca/sound/genres.tar.gz',
|
|
|
|
'md5': '5b3d6dddb579ab49814ab86dba69e7c7',
|
|
|
|
},
|
|
|
|
]
|
|
|
|
label_list = [
|
|
|
|
'blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal',
|
|
|
|
'pop', 'reggae', 'rock'
|
|
|
|
]
|
|
|
|
meta = os.path.join('genres', 'input.mf')
|
|
|
|
meta_info = collections.namedtuple('META_INFO', ('file_path', 'label'))
|
|
|
|
audio_path = 'genres'
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
mode='train',
|
|
|
|
seed=0,
|
|
|
|
n_folds=5,
|
|
|
|
split=1,
|
|
|
|
feat_type='raw',
|
|
|
|
**kwargs):
|
|
|
|
"""
|
|
|
|
Ags:
|
|
|
|
mode (:obj:`str`, `optional`, defaults to `train`):
|
|
|
|
It identifies the dataset mode (train or dev).
|
|
|
|
seed (:obj:`int`, `optional`, defaults to 0):
|
|
|
|
Set the random seed to shuffle samples.
|
|
|
|
n_folds (:obj:`int`, `optional`, defaults to 5):
|
|
|
|
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
|
|
|
|
split (:obj:`int`, `optional`, defaults to 1):
|
|
|
|
It specify the fold of dev dataset.
|
|
|
|
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
|
|
|
It identifies the feature type that user wants to extrace of an audio file.
|
|
|
|
"""
|
|
|
|
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
|
|
|
|
files, labels = self._get_data(mode, seed, n_folds, split)
|
|
|
|
super(GTZAN, self).__init__(
|
|
|
|
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
|
|
|
|
|
|
|
def _get_meta_info(self) -> List[collections.namedtuple]:
|
|
|
|
ret = []
|
|
|
|
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
|
|
|
|
for line in rf.readlines():
|
|
|
|
ret.append(self.meta_info(*line.strip().split('\t')))
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def _get_data(self, mode, seed, n_folds,
|
|
|
|
split) -> Tuple[List[str], List[int]]:
|
|
|
|
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
|
|
|
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
|
|
|
|
download_and_decompress(self.archieves, DATA_HOME)
|
|
|
|
|
|
|
|
meta_info = self._get_meta_info()
|
|
|
|
random.seed(seed) # shuffle samples to split data
|
|
|
|
random.shuffle(
|
|
|
|
meta_info
|
|
|
|
) # make sure using the same seed to create train and dev dataset
|
|
|
|
|
|
|
|
files = []
|
|
|
|
labels = []
|
|
|
|
n_samples_per_fold = len(meta_info) // n_folds
|
|
|
|
for idx, sample in enumerate(meta_info):
|
|
|
|
file_path, label = sample
|
|
|
|
filename = os.path.basename(file_path)
|
|
|
|
target = self.label_list.index(label)
|
|
|
|
fold = idx // n_samples_per_fold + 1
|
|
|
|
|
|
|
|
if mode == 'train' and int(fold) != split:
|
|
|
|
files.append(
|
|
|
|
os.path.join(DATA_HOME, self.audio_path, label, filename))
|
|
|
|
labels.append(target)
|
|
|
|
|
|
|
|
if mode != 'train' and int(fold) == split:
|
|
|
|
files.append(
|
|
|
|
os.path.join(DATA_HOME, self.audio_path, label, filename))
|
|
|
|
labels.append(target)
|
|
|
|
|
|
|
|
return files, labels
|