|
|
|
"""
|
|
|
|
Inference for a simplifed version of Baidu DeepSpeech2 model.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import distutils.util
|
|
|
|
import argparse
|
|
|
|
import gzip
|
|
|
|
from audio_data_utils import DataGenerator
|
|
|
|
from model import deep_speech2
|
|
|
|
from decoder import ctc_decode
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description='Simplified version of DeepSpeech2 inference.')
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_samples",
|
|
|
|
default=10,
|
|
|
|
type=int,
|
|
|
|
help="Number of samples for inference. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_conv_layers",
|
|
|
|
default=2,
|
|
|
|
type=int,
|
|
|
|
help="Convolution layer number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num_rnn_layers",
|
|
|
|
default=3,
|
|
|
|
type=int,
|
|
|
|
help="RNN layer number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--rnn_layer_size",
|
|
|
|
default=512,
|
|
|
|
type=int,
|
|
|
|
help="RNN layer cell number. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_gpu",
|
|
|
|
default=True,
|
|
|
|
type=distutils.util.strtobool,
|
|
|
|
help="Use gpu or not. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--normalizer_manifest_path",
|
|
|
|
default='data/manifest.libri.train-clean-100',
|
|
|
|
type=str,
|
|
|
|
help="Manifest path for normalizer. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--decode_manifest_path",
|
|
|
|
default='data/manifest.libri.test-clean',
|
|
|
|
type=str,
|
|
|
|
help="Manifest path for decoding. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--model_filepath",
|
|
|
|
default='./params.tar.gz',
|
|
|
|
type=str,
|
|
|
|
help="Model filepath. (default: %(default)s)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--vocab_filepath",
|
|
|
|
default='data/eng_vocab.txt',
|
|
|
|
type=str,
|
|
|
|
help="Vocabulary filepath. (default: %(default)s)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def infer():
|
|
|
|
"""
|
|
|
|
Max-ctc-decoding for DeepSpeech2.
|
|
|
|
"""
|
|
|
|
# initialize data generator
|
|
|
|
data_generator = DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_filepath,
|
|
|
|
normalizer_manifest_path=args.normalizer_manifest_path,
|
|
|
|
normalizer_num_samples=200,
|
|
|
|
max_duration=20.0,
|
|
|
|
min_duration=0.0,
|
|
|
|
stride_ms=10,
|
|
|
|
window_ms=20)
|
|
|
|
|
|
|
|
# create network config
|
|
|
|
dict_size = data_generator.vocabulary_size()
|
|
|
|
vocab_list = data_generator.vocabulary_list()
|
|
|
|
audio_data = paddle.layer.data(
|
|
|
|
name="audio_spectrogram",
|
|
|
|
height=161,
|
|
|
|
width=2000,
|
|
|
|
type=paddle.data_type.dense_vector(322000))
|
|
|
|
text_data = paddle.layer.data(
|
|
|
|
name="transcript_text",
|
|
|
|
type=paddle.data_type.integer_value_sequence(dict_size))
|
|
|
|
output_probs = deep_speech2(
|
|
|
|
audio_data=audio_data,
|
|
|
|
text_data=text_data,
|
|
|
|
dict_size=dict_size,
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
rnn_size=args.rnn_layer_size,
|
|
|
|
is_inference=True)
|
|
|
|
|
|
|
|
# load parameters
|
|
|
|
parameters = paddle.parameters.Parameters.from_tar(
|
|
|
|
gzip.open(args.model_filepath))
|
|
|
|
|
|
|
|
# prepare infer data
|
|
|
|
feeding = data_generator.data_name_feeding()
|
|
|
|
test_batch_reader = data_generator.batch_reader_creator(
|
|
|
|
manifest_path=args.decode_manifest_path,
|
|
|
|
batch_size=args.num_samples,
|
|
|
|
padding_to=2000,
|
|
|
|
flatten=True,
|
|
|
|
sort_by_duration=False,
|
|
|
|
shuffle=False)
|
|
|
|
infer_data = test_batch_reader().next()
|
|
|
|
|
|
|
|
# run inference
|
|
|
|
infer_results = paddle.infer(
|
|
|
|
output_layer=output_probs, parameters=parameters, input=infer_data)
|
|
|
|
num_steps = len(infer_results) / len(infer_data)
|
|
|
|
probs_split = [
|
|
|
|
infer_results[i * num_steps:(i + 1) * num_steps]
|
|
|
|
for i in xrange(0, len(infer_data))
|
|
|
|
]
|
|
|
|
|
|
|
|
# decode and print
|
|
|
|
for i, probs in enumerate(probs_split):
|
|
|
|
output_transcription = ctc_decode(
|
|
|
|
probs_seq=probs, vocabulary=vocab_list, method="best_path")
|
|
|
|
target_transcription = ''.join(
|
|
|
|
[vocab_list[index] for index in infer_data[i][1]])
|
|
|
|
print("Target Transcription: %s \nOutput Transcription: %s \n" %
|
|
|
|
(target_transcription, output_transcription))
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
|
|
|
infer()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|