You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
3.5 KiB
143 lines
3.5 KiB
2 years ago
|
############################################
|
||
|
# Network Architecture #
|
||
|
############################################
|
||
|
freeze_hubert: False
|
||
|
normalize_wav: True
|
||
|
output_norm: True
|
||
|
init_type: kaiming_uniform # !Warning: need to convergence
|
||
|
enc:
|
||
|
input_shape: 1024
|
||
|
dnn_blocks: 2
|
||
|
dnn_neurons: 1024
|
||
|
activation: True
|
||
|
ctc:
|
||
|
enc_n_units: 1024
|
||
|
blank_id: 0
|
||
|
dropout_rate: 0.0
|
||
|
hubert_params_path: "exp/hubert/hubert-large-lv60.pdparams"
|
||
|
|
||
|
|
||
|
task_cfg:
|
||
|
label_rate: 50.0
|
||
|
sample_rate: 16000
|
||
|
normalize: True
|
||
|
enable_padding: False
|
||
|
max_keep_size: None
|
||
|
max_sample_size: 250000
|
||
|
min_sample_size: 32000
|
||
|
single_target: False
|
||
|
random_crop: True
|
||
|
pad_audio: False
|
||
|
|
||
|
model_cfg:
|
||
|
dropout_input: 0.0
|
||
|
final_dropout: 0.0
|
||
|
dropout: 0.0
|
||
|
attention_dropout: 0.0
|
||
|
activation_dropout: 0.1
|
||
|
apply_mask: True
|
||
|
mask_length: 10
|
||
|
mask_prob: 0.5
|
||
|
mask_selection: static
|
||
|
mask_other: 0.0
|
||
|
no_mask_overlap: False
|
||
|
mask_channel_length: 64
|
||
|
mask_channel_prob: 0.25
|
||
|
mask_channel_selection: static
|
||
|
mask_channel_other: 0.0
|
||
|
no_mask_channel_overlap: False
|
||
|
feature_grad_mult: 0.0
|
||
|
layerdrop: 0.1
|
||
|
normalize: True
|
||
|
fp16: True
|
||
|
label_rate: 50
|
||
|
extractor_mode: layer_norm
|
||
|
encoder_layers: 24
|
||
|
encoder_embed_dim: 1024
|
||
|
encoder_ffn_embed_dim: 4096
|
||
|
encoder_attention_heads: 16
|
||
|
activation_fn: gelu
|
||
|
encoder_layerdrop: 0.1
|
||
|
dropout_features: 0.0
|
||
|
final_dim: 768
|
||
|
untie_final_proj: True
|
||
|
layer_norm_first: True
|
||
|
conv_feature_layers: "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2"
|
||
|
conv_bias: False
|
||
|
logit_temp: 0.1
|
||
|
target_glu: False
|
||
|
mask_min_space: 1
|
||
|
mask_channel_min_space: 1
|
||
|
conv_pos: 128
|
||
|
conv_pos_groups: 16
|
||
|
latent_temp: [2.0, 0.5, 0.999995]
|
||
|
skip_masked: False
|
||
|
skip_nomask: True
|
||
|
|
||
|
###########################################
|
||
|
# Data #
|
||
|
###########################################
|
||
|
train_manifest: data/manifest.train-clean-100
|
||
|
dev_manifest: data/manifest.dev
|
||
|
test_manifest: data/manifest.test-clean
|
||
|
|
||
|
###########################################
|
||
|
# Dataloader #
|
||
|
###########################################
|
||
|
vocab_filepath: data/lang_char/vocab.txt
|
||
|
unit_type: char
|
||
|
mean_std_filepath: ""
|
||
|
preprocess_config: conf/preprocess.yaml
|
||
|
sortagrad: -1 # Feed samples from shortest to longest ; -1: enabled for all epochs 0: disabled other: enabled for other epochs
|
||
|
batch_size: 4 # Different batch_size may cause large differences in results
|
||
|
maxlen_in: 1500 # if input length > maxlen-in batchsize is automatically reduced
|
||
|
maxlen_out: 150 # if output length > maxlen-out batchsize is automatically reduced
|
||
|
minibatches: 0 # for debug
|
||
|
batch_count: auto
|
||
|
batch_bins: 0
|
||
|
batch_frames_in: 0
|
||
|
batch_frames_out: 0
|
||
|
batch_frames_inout: 0
|
||
|
num_workers: 0
|
||
|
subsampling_factor: 1
|
||
|
num_encs: 1
|
||
|
dist_sampler: True
|
||
|
shortest_first: True
|
||
|
return_lens_rate: True
|
||
|
|
||
|
############################################
|
||
|
# Data Augmentation #
|
||
|
############################################
|
||
|
audio_augment: # for raw audio
|
||
|
sample_rate: 16000
|
||
|
speeds: [95, 100, 105]
|
||
|
|
||
|
###########################################
|
||
|
# Training #
|
||
|
###########################################
|
||
|
n_epoch: 3
|
||
|
accum_grad: 8
|
||
|
global_grad_clip: 5.0
|
||
|
model_optim: adadelta
|
||
|
model_optim_conf:
|
||
|
lr: 1.0
|
||
|
epsilon: 1.0e-6
|
||
|
rho: 0.95
|
||
|
model_scheduler: constantlr
|
||
|
model_scheduler_conf:
|
||
|
warmup_steps: 25000
|
||
|
lr_decay: 1.0
|
||
|
hubert_optim: adadelta
|
||
|
hubert_optim_conf:
|
||
|
lr: 0.95
|
||
|
epsilon: 1.0e-6
|
||
|
rho: 0.95
|
||
|
hubert_scheduler: constantlr
|
||
|
hubert_scheduler_conf:
|
||
|
warmup_steps: 25000
|
||
|
lr_decay: 1.0
|
||
|
log_interval: 1
|
||
|
checkpoint:
|
||
|
kbest_n: 50
|
||
|
latest_n: 5
|