You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
449 lines
20 KiB
449 lines
20 KiB
4 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Encoder definition."""
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from typeguard import check_argument_types
|
||
|
|
||
|
from deepspeech.modules.activation import get_activation
|
||
|
from deepspeech.modules.attention import MultiHeadedAttention
|
||
|
from deepspeech.modules.attention import RelPositionMultiHeadedAttention
|
||
|
from deepspeech.modules.conformer_convolution import ConvolutionModule
|
||
|
from deepspeech.modules.embedding import PositionalEncoding
|
||
|
from deepspeech.modules.embedding import RelPositionalEncoding
|
||
|
from deepspeech.modules.encoder_layer import ConformerEncoderLayer
|
||
|
from deepspeech.modules.encoder_layer import TransformerEncoderLayer
|
||
|
from deepspeech.modules.mask import add_optional_chunk_mask
|
||
|
from deepspeech.modules.mask import make_non_pad_mask
|
||
|
from deepspeech.modules.positionwise_feed_forward import PositionwiseFeedForward
|
||
|
from deepspeech.modules.subsampling import Conv2dSubsampling4
|
||
|
from deepspeech.modules.subsampling import Conv2dSubsampling6
|
||
|
from deepspeech.modules.subsampling import Conv2dSubsampling8
|
||
|
from deepspeech.modules.subsampling import LinearNoSubsampling
|
||
|
from deepspeech.utils.log import Log
|
||
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
__all__ = ["BaseEncoder", 'TransformerEncoder', "ConformerEncoder"]
|
||
|
|
||
|
|
||
|
class BaseEncoder(nn.Layer):
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_size: int,
|
||
|
output_size: int=256,
|
||
|
attention_heads: int=4,
|
||
|
linear_units: int=2048,
|
||
|
num_blocks: int=6,
|
||
|
dropout_rate: float=0.1,
|
||
|
positional_dropout_rate: float=0.1,
|
||
|
attention_dropout_rate: float=0.0,
|
||
|
input_layer: str="conv2d",
|
||
|
pos_enc_layer_type: str="abs_pos",
|
||
|
normalize_before: bool=True,
|
||
|
concat_after: bool=False,
|
||
|
static_chunk_size: int=0,
|
||
|
use_dynamic_chunk: bool=False,
|
||
|
global_cmvn: paddle.nn.Layer=None,
|
||
|
use_dynamic_left_chunk: bool=False, ):
|
||
|
"""
|
||
|
Args:
|
||
|
input_size (int): input dim, d_feature
|
||
|
output_size (int): dimension of attention, d_model
|
||
|
attention_heads (int): the number of heads of multi head attention
|
||
|
linear_units (int): the hidden units number of position-wise feed
|
||
|
forward
|
||
|
num_blocks (int): the number of encoder blocks
|
||
|
dropout_rate (float): dropout rate
|
||
|
attention_dropout_rate (float): dropout rate in attention
|
||
|
positional_dropout_rate (float): dropout rate after adding
|
||
|
positional encoding
|
||
|
input_layer (str): input layer type.
|
||
|
optional [linear, conv2d, conv2d6, conv2d8]
|
||
|
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||
|
opitonal [abs_pos, scaled_abs_pos, rel_pos]
|
||
|
normalize_before (bool):
|
||
|
True: use layer_norm before each sub-block of a layer.
|
||
|
False: use layer_norm after each sub-block of a layer.
|
||
|
concat_after (bool): whether to concat attention layer's input
|
||
|
and output.
|
||
|
True: x -> x + linear(concat(x, att(x)))
|
||
|
False: x -> x + att(x)
|
||
|
static_chunk_size (int): chunk size for static chunk training and
|
||
|
decoding
|
||
|
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||
|
training or not, You can only use fixed chunk(chunk_size > 0)
|
||
|
or dyanmic chunk size(use_dynamic_chunk = True)
|
||
|
global_cmvn (Optional[paddle.nn.Layer]): Optional GlobalCMVN layer
|
||
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||
|
dynamic chunk training
|
||
|
"""
|
||
|
assert check_argument_types()
|
||
|
super().__init__()
|
||
|
self._output_size = output_size
|
||
|
|
||
|
if pos_enc_layer_type == "abs_pos":
|
||
|
pos_enc_class = PositionalEncoding
|
||
|
elif pos_enc_layer_type == "rel_pos":
|
||
|
pos_enc_class = RelPositionalEncoding
|
||
|
else:
|
||
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
||
|
|
||
|
if input_layer == "linear":
|
||
|
subsampling_class = LinearNoSubsampling
|
||
|
elif input_layer == "conv2d":
|
||
|
subsampling_class = Conv2dSubsampling4
|
||
|
elif input_layer == "conv2d6":
|
||
|
subsampling_class = Conv2dSubsampling6
|
||
|
elif input_layer == "conv2d8":
|
||
|
subsampling_class = Conv2dSubsampling8
|
||
|
else:
|
||
|
raise ValueError("unknown input_layer: " + input_layer)
|
||
|
|
||
|
self.global_cmvn = global_cmvn
|
||
|
self.embed = subsampling_class(
|
||
|
idim=input_size,
|
||
|
odim=output_size,
|
||
|
dropout_rate=dropout_rate,
|
||
|
pos_enc_class=pos_enc_class(
|
||
|
d_model=output_size, dropout_rate=positional_dropout_rate), )
|
||
|
|
||
|
self.normalize_before = normalize_before
|
||
|
self.after_norm = nn.LayerNorm(output_size, epsilon=1e-12)
|
||
|
self.static_chunk_size = static_chunk_size
|
||
|
self.use_dynamic_chunk = use_dynamic_chunk
|
||
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self._output_size
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
xs: paddle.Tensor,
|
||
|
xs_lens: paddle.Tensor,
|
||
|
decoding_chunk_size: int=0,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
||
|
"""Embed positions in tensor.
|
||
|
Args:
|
||
|
xs: padded input tensor (B, L, D)
|
||
|
xs_lens: input length (B)
|
||
|
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||
|
0: default for training, use random dynamic chunk.
|
||
|
<0: for decoding, use full chunk.
|
||
|
>0: for decoding, use fixed chunk size as set.
|
||
|
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||
|
the chunk size is decoding_chunk_size.
|
||
|
>=0: use num_decoding_left_chunks
|
||
|
<0: use all left chunks
|
||
|
Returns:
|
||
|
encoder output tensor, lens and mask
|
||
|
"""
|
||
|
masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L)
|
||
|
|
||
|
if self.global_cmvn is not None:
|
||
|
xs = self.global_cmvn(xs)
|
||
|
#TODO(Hui Zhang): self.embed(xs, masks, offset=0), stride_slice not support bool tensor
|
||
|
xs, pos_emb, masks = self.embed(xs, masks.type_as(xs), offset=0)
|
||
|
#TODO(Hui Zhang): remove mask.astype, stride_slice not support bool tensor
|
||
|
masks = masks.astype(paddle.bool)
|
||
|
#TODO(Hui Zhang): mask_pad = ~masks
|
||
|
mask_pad = masks.logical_not()
|
||
|
chunk_masks = add_optional_chunk_mask(
|
||
|
xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk,
|
||
|
decoding_chunk_size, self.static_chunk_size,
|
||
|
num_decoding_left_chunks)
|
||
|
for layer in self.encoders:
|
||
|
xs, chunk_masks, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||
|
if self.normalize_before:
|
||
|
xs = self.after_norm(xs)
|
||
|
# Here we assume the mask is not changed in encoder layers, so just
|
||
|
# return the masks before encoder layers, and the masks will be used
|
||
|
# for cross attention with decoder later
|
||
|
return xs, masks
|
||
|
|
||
|
def forward_chunk(
|
||
|
self,
|
||
|
xs: paddle.Tensor,
|
||
|
offset: int,
|
||
|
required_cache_size: int,
|
||
|
subsampling_cache: Optional[paddle.Tensor]=None,
|
||
|
elayers_output_cache: Optional[List[paddle.Tensor]]=None,
|
||
|
conformer_cnn_cache: Optional[List[paddle.Tensor]]=None,
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor, List[paddle.Tensor], List[
|
||
|
paddle.Tensor]]:
|
||
|
""" Forward just one chunk
|
||
|
Args:
|
||
|
xs (paddle.Tensor): chunk input, [B=1, T, D]
|
||
|
offset (int): current offset in encoder output time stamp
|
||
|
required_cache_size (int): cache size required for next chunk
|
||
|
compuation
|
||
|
>=0: actual cache size
|
||
|
<0: means all history cache is required
|
||
|
subsampling_cache (Optional[paddle.Tensor]): subsampling cache
|
||
|
elayers_output_cache (Optional[List[paddle.Tensor]]):
|
||
|
transformer/conformer encoder layers output cache
|
||
|
conformer_cnn_cache (Optional[List[paddle.Tensor]]): conformer
|
||
|
cnn cache
|
||
|
Returns:
|
||
|
paddle.Tensor: output of current input xs
|
||
|
paddle.Tensor: subsampling cache required for next chunk computation
|
||
|
List[paddle.Tensor]: encoder layers output cache required for next
|
||
|
chunk computation
|
||
|
List[paddle.Tensor]: conformer cnn cache
|
||
|
"""
|
||
|
assert xs.size(0) == 1 # batch size must be one
|
||
|
# tmp_masks is just for interface compatibility
|
||
|
tmp_masks = paddle.ones([1, xs.size(1)], dtype=paddle.bool)
|
||
|
tmp_masks = tmp_masks.unsqueeze(1) #[B=1, C=1, T]
|
||
|
|
||
|
if self.global_cmvn is not None:
|
||
|
xs = self.global_cmvn(xs)
|
||
|
|
||
|
xs, pos_emb, _ = self.embed(
|
||
|
xs, tmp_masks, offset=offset) #xs=(B, T, D), pos_emb=(B=1, T, D)
|
||
|
if subsampling_cache is not None:
|
||
|
cache_size = subsampling_cache.size(1) #T
|
||
|
xs = paddle.cat((subsampling_cache, xs), dim=1)
|
||
|
else:
|
||
|
cache_size = 0
|
||
|
pos_emb = self.embed.position_encoding(
|
||
|
offset=offset - cache_size, size=xs.size(1))
|
||
|
|
||
|
if required_cache_size < 0:
|
||
|
next_cache_start = 0
|
||
|
elif required_cache_size == 0:
|
||
|
next_cache_start = xs.size(1)
|
||
|
else:
|
||
|
next_cache_start = xs.size(1) - required_cache_size
|
||
|
r_subsampling_cache = xs[:, next_cache_start:, :]
|
||
|
|
||
|
# Real mask for transformer/conformer layers
|
||
|
masks = paddle.ones([1, xs.size(1)], dtype=paddle.bool)
|
||
|
masks = masks.unsqueeze(1) #[B=1, C=1, T]
|
||
|
r_elayers_output_cache = []
|
||
|
r_conformer_cnn_cache = []
|
||
|
for i, layer in enumerate(self.encoders):
|
||
|
attn_cache = None if elayers_output_cache is None else elayers_output_cache[
|
||
|
i]
|
||
|
cnn_cache = None if conformer_cnn_cache is None else conformer_cnn_cache[
|
||
|
i]
|
||
|
xs, _, new_cnn_cache = layer(
|
||
|
xs,
|
||
|
masks,
|
||
|
pos_emb,
|
||
|
output_cache=attn_cache,
|
||
|
cnn_cache=cnn_cache)
|
||
|
r_elayers_output_cache.append(xs[:, next_cache_start:, :])
|
||
|
r_conformer_cnn_cache.append(new_cnn_cache)
|
||
|
if self.normalize_before:
|
||
|
xs = self.after_norm(xs)
|
||
|
|
||
|
return (xs[:, cache_size:, :], r_subsampling_cache,
|
||
|
r_elayers_output_cache, r_conformer_cnn_cache)
|
||
|
|
||
|
def forward_chunk_by_chunk(
|
||
|
self,
|
||
|
xs: paddle.Tensor,
|
||
|
decoding_chunk_size: int,
|
||
|
num_decoding_left_chunks: int=-1,
|
||
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
||
|
""" Forward input chunk by chunk with chunk_size like a streaming
|
||
|
fashion
|
||
|
Here we should pay special attention to computation cache in the
|
||
|
streaming style forward chunk by chunk. Three things should be taken
|
||
|
into account for computation in the current network:
|
||
|
1. transformer/conformer encoder layers output cache
|
||
|
2. convolution in conformer
|
||
|
3. convolution in subsampling
|
||
|
However, we don't implement subsampling cache for:
|
||
|
1. We can control subsampling module to output the right result by
|
||
|
overlapping input instead of cache left context, even though it
|
||
|
wastes some computation, but subsampling only takes a very
|
||
|
small fraction of computation in the whole model.
|
||
|
2. Typically, there are several covolution layers with subsampling
|
||
|
in subsampling module, it is tricky and complicated to do cache
|
||
|
with different convolution layers with different subsampling
|
||
|
rate.
|
||
|
3. Currently, nn.Sequential is used to stack all the convolution
|
||
|
layers in subsampling, we need to rewrite it to make it work
|
||
|
with cache, which is not prefered.
|
||
|
Args:
|
||
|
xs (paddle.Tensor): (1, max_len, dim)
|
||
|
chunk_size (int): decoding chunk size.
|
||
|
num_left_chunks (int): decoding with num left chunks.
|
||
|
"""
|
||
|
assert decoding_chunk_size > 0
|
||
|
# The model is trained by static or dynamic chunk
|
||
|
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
||
|
|
||
|
# feature stride and window for `subsampling` module
|
||
|
subsampling = self.embed.subsampling_rate
|
||
|
context = self.embed.right_context + 1 # Add current frame
|
||
|
stride = subsampling * decoding_chunk_size
|
||
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
||
|
|
||
|
num_frames = xs.size(1)
|
||
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
||
|
subsampling_cache: Optional[paddle.Tensor] = None
|
||
|
elayers_output_cache: Optional[List[paddle.Tensor]] = None
|
||
|
conformer_cnn_cache: Optional[List[paddle.Tensor]] = None
|
||
|
outputs = []
|
||
|
offset = 0
|
||
|
# Feed forward overlap input step by step
|
||
|
for cur in range(0, num_frames - context + 1, stride):
|
||
|
end = min(cur + decoding_window, num_frames)
|
||
|
chunk_xs = xs[:, cur:end, :]
|
||
|
(y, subsampling_cache, elayers_output_cache,
|
||
|
conformer_cnn_cache) = self.forward_chunk(
|
||
|
chunk_xs, offset, required_cache_size, subsampling_cache,
|
||
|
elayers_output_cache, conformer_cnn_cache)
|
||
|
outputs.append(y)
|
||
|
offset += y.size(1)
|
||
|
ys = paddle.cat(outputs, 1)
|
||
|
# fake mask, just for jit script and compatibility with `forward` api
|
||
|
masks = paddle.ones([1, ys.size(1)], dtype=paddle.bool)
|
||
|
masks = masks.unsqueeze(1)
|
||
|
return ys, masks
|
||
|
|
||
|
|
||
|
class TransformerEncoder(BaseEncoder):
|
||
|
"""Transformer encoder module."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_size: int,
|
||
|
output_size: int=256,
|
||
|
attention_heads: int=4,
|
||
|
linear_units: int=2048,
|
||
|
num_blocks: int=6,
|
||
|
dropout_rate: float=0.1,
|
||
|
positional_dropout_rate: float=0.1,
|
||
|
attention_dropout_rate: float=0.0,
|
||
|
input_layer: str="conv2d",
|
||
|
pos_enc_layer_type: str="abs_pos",
|
||
|
normalize_before: bool=True,
|
||
|
concat_after: bool=False,
|
||
|
static_chunk_size: int=0,
|
||
|
use_dynamic_chunk: bool=False,
|
||
|
global_cmvn: nn.Layer=None,
|
||
|
use_dynamic_left_chunk: bool=False, ):
|
||
|
""" Construct TransformerEncoder
|
||
|
See Encoder for the meaning of each parameter.
|
||
|
"""
|
||
|
assert check_argument_types()
|
||
|
super().__init__(input_size, output_size, attention_heads, linear_units,
|
||
|
num_blocks, dropout_rate, positional_dropout_rate,
|
||
|
attention_dropout_rate, input_layer,
|
||
|
pos_enc_layer_type, normalize_before, concat_after,
|
||
|
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||
|
use_dynamic_left_chunk)
|
||
|
self.encoders = nn.ModuleList([
|
||
|
TransformerEncoderLayer(
|
||
|
size=output_size,
|
||
|
self_attn=MultiHeadedAttention(attention_heads, output_size,
|
||
|
attention_dropout_rate),
|
||
|
feed_forward=PositionwiseFeedForward(output_size, linear_units,
|
||
|
dropout_rate),
|
||
|
dropout_rate=dropout_rate,
|
||
|
normalize_before=normalize_before,
|
||
|
concat_after=concat_after) for _ in range(num_blocks)
|
||
|
])
|
||
|
|
||
|
|
||
|
class ConformerEncoder(BaseEncoder):
|
||
|
"""Conformer encoder module."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_size: int,
|
||
|
output_size: int=256,
|
||
|
attention_heads: int=4,
|
||
|
linear_units: int=2048,
|
||
|
num_blocks: int=6,
|
||
|
dropout_rate: float=0.1,
|
||
|
positional_dropout_rate: float=0.1,
|
||
|
attention_dropout_rate: float=0.0,
|
||
|
input_layer: str="conv2d",
|
||
|
pos_enc_layer_type: str="rel_pos",
|
||
|
normalize_before: bool=True,
|
||
|
concat_after: bool=False,
|
||
|
static_chunk_size: int=0,
|
||
|
use_dynamic_chunk: bool=False,
|
||
|
global_cmvn: nn.Layer=None,
|
||
|
use_dynamic_left_chunk: bool=False,
|
||
|
positionwise_conv_kernel_size: int=1,
|
||
|
macaron_style: bool=True,
|
||
|
selfattention_layer_type: str="rel_selfattn",
|
||
|
activation_type: str="swish",
|
||
|
use_cnn_module: bool=True,
|
||
|
cnn_module_kernel: int=15,
|
||
|
causal: bool=False,
|
||
|
cnn_module_norm: str="batch_norm", ):
|
||
|
"""Construct ConformerEncoder
|
||
|
Args:
|
||
|
input_size to use_dynamic_chunk, see in BaseEncoder
|
||
|
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
||
|
conv1d layer.
|
||
|
macaron_style (bool): Whether to use macaron style for
|
||
|
positionwise layer.
|
||
|
selfattention_layer_type (str): Encoder attention layer type,
|
||
|
the parameter has no effect now, it's just for configure
|
||
|
compatibility.
|
||
|
activation_type (str): Encoder activation function type.
|
||
|
use_cnn_module (bool): Whether to use convolution module.
|
||
|
cnn_module_kernel (int): Kernel size of convolution module.
|
||
|
causal (bool): whether to use causal convolution or not.
|
||
|
cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm']
|
||
|
"""
|
||
|
assert check_argument_types()
|
||
|
super().__init__(input_size, output_size, attention_heads, linear_units,
|
||
|
num_blocks, dropout_rate, positional_dropout_rate,
|
||
|
attention_dropout_rate, input_layer,
|
||
|
pos_enc_layer_type, normalize_before, concat_after,
|
||
|
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
||
|
use_dynamic_left_chunk)
|
||
|
activation = get_activation(activation_type)
|
||
|
|
||
|
# self-attention module definition
|
||
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
||
|
encoder_selfattn_layer_args = (attention_heads, output_size,
|
||
|
attention_dropout_rate)
|
||
|
# feed-forward module definition
|
||
|
positionwise_layer = PositionwiseFeedForward
|
||
|
positionwise_layer_args = (output_size, linear_units, dropout_rate,
|
||
|
activation)
|
||
|
# convolution module definition
|
||
|
convolution_layer = ConvolutionModule
|
||
|
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
||
|
cnn_module_norm, causal)
|
||
|
|
||
|
self.encoders = nn.ModuleList([
|
||
|
ConformerEncoderLayer(
|
||
|
size=output_size,
|
||
|
self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
||
|
feed_forward=positionwise_layer(*positionwise_layer_args),
|
||
|
feed_forward_macaron=positionwise_layer(
|
||
|
*positionwise_layer_args) if macaron_style else None,
|
||
|
conv_module=convolution_layer(*convolution_layer_args)
|
||
|
if use_cnn_module else None,
|
||
|
dropout_rate=dropout_rate,
|
||
|
normalize_before=normalize_before,
|
||
|
concat_after=concat_after) for _ in range(num_blocks)
|
||
|
])
|