|
|
|
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
import sys
|
|
|
|
|
|
|
|
from paddlespeech.audio.transform.transformation import Transformation
|
|
|
|
from paddlespeech.s2t.utils.cli_readers import file_reader_helper
|
|
|
|
from paddlespeech.s2t.utils.cli_utils import get_commandline_args
|
|
|
|
from paddlespeech.s2t.utils.cli_utils import is_scipy_wav_style
|
|
|
|
|
|
|
|
|
|
|
|
def get_parser():
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="convert feature to its shape",
|
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter, )
|
|
|
|
parser.add_argument(
|
|
|
|
"--verbose", "-V", default=0, type=int, help="Verbose option")
|
|
|
|
parser.add_argument(
|
|
|
|
"--filetype",
|
|
|
|
type=str,
|
|
|
|
default="mat",
|
|
|
|
choices=["mat", "hdf5", "sound.hdf5", "sound"],
|
|
|
|
help="Specify the file format for the rspecifier. "
|
|
|
|
'"mat" is the matrix format in kaldi', )
|
|
|
|
parser.add_argument(
|
|
|
|
"--preprocess-conf",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The configuration file for the pre-processing", )
|
|
|
|
parser.add_argument(
|
|
|
|
"rspecifier",
|
|
|
|
type=str,
|
|
|
|
help="Read specifier for feats. e.g. ark:some.ark")
|
|
|
|
parser.add_argument(
|
|
|
|
"out",
|
|
|
|
nargs="?",
|
|
|
|
type=argparse.FileType("w"),
|
|
|
|
default=sys.stdout,
|
|
|
|
help="The output filename. "
|
|
|
|
"If omitted, then output to sys.stdout", )
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = get_parser()
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# logging info
|
|
|
|
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
|
|
|
if args.verbose > 0:
|
|
|
|
logging.basicConfig(level=logging.INFO, format=logfmt)
|
|
|
|
else:
|
|
|
|
logging.basicConfig(level=logging.WARN, format=logfmt)
|
|
|
|
logging.info(get_commandline_args())
|
|
|
|
|
|
|
|
if args.preprocess_conf is not None:
|
|
|
|
preprocessing = Transformation(args.preprocess_conf)
|
|
|
|
logging.info("Apply preprocessing: {}".format(preprocessing))
|
|
|
|
else:
|
|
|
|
preprocessing = None
|
|
|
|
|
|
|
|
# There are no necessary for matrix without preprocessing,
|
|
|
|
# so change to file_reader_helper to return shape.
|
|
|
|
# This make sense only with filetype="hdf5".
|
|
|
|
for utt, mat in file_reader_helper(
|
|
|
|
args.rspecifier, args.filetype, return_shape=preprocessing is None):
|
|
|
|
if preprocessing is not None:
|
|
|
|
if is_scipy_wav_style(mat):
|
|
|
|
# If data is sound file, then got as Tuple[int, ndarray]
|
|
|
|
rate, mat = mat
|
|
|
|
mat = preprocessing(mat, uttid_list=utt)
|
|
|
|
shape_str = ",".join(map(str, mat.shape))
|
|
|
|
else:
|
|
|
|
if len(mat) == 2 and isinstance(mat[1], tuple):
|
|
|
|
# If data is sound file, Tuple[int, Tuple[int, ...]]
|
|
|
|
rate, mat = mat
|
|
|
|
shape_str = ",".join(map(str, mat))
|
|
|
|
args.out.write("{} {}\n".format(utt, shape_str))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|