You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/kaldi/lm/arpa-lm-compiler.cc

378 lines
14 KiB

// lm/arpa-lm-compiler.cc
// Copyright 2009-2011 Gilles Boulianne
// Copyright 2016 Smart Action LLC (kkm)
// Copyright 2017 Xiaohui Zhang
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <limits>
#include <sstream>
#include <utility>
#include "base/kaldi-math.h"
#include "lm/arpa-lm-compiler.h"
#include "util/stl-utils.h"
#include "util/text-utils.h"
#include "fstext/remove-eps-local.h"
namespace kaldi {
class ArpaLmCompilerImplInterface {
public:
virtual ~ArpaLmCompilerImplInterface() { }
virtual void ConsumeNGram(const NGram& ngram, bool is_highest) = 0;
};
namespace {
typedef int32 StateId;
typedef int32 Symbol;
// GeneralHistKey can represent state history in an arbitrarily large n
// n-gram model with symbol ids fitting int32.
class GeneralHistKey {
public:
// Construct key from being and end iterators.
template<class InputIt>
GeneralHistKey(InputIt begin, InputIt end) : vector_(begin, end) { }
// Construct empty history key.
GeneralHistKey() : vector_() { }
// Return tails of the key as a GeneralHistKey. The tails of an n-gram
// w[1..n] is the sequence w[2..n] (and the heads is w[1..n-1], but the
// key class does not need this operartion).
GeneralHistKey Tails() const {
return GeneralHistKey(vector_.begin() + 1, vector_.end());
}
// Keys are equal if represent same state.
friend bool operator==(const GeneralHistKey& a, const GeneralHistKey& b) {
return a.vector_ == b.vector_;
}
// Public typename HashType for hashing.
struct HashType : public std::unary_function<GeneralHistKey, size_t> {
size_t operator()(const GeneralHistKey& key) const {
return VectorHasher<Symbol>().operator()(key.vector_);
}
};
private:
std::vector<Symbol> vector_;
};
// OptimizedHistKey combines 3 21-bit symbol ID values into one 64-bit
// machine word. allowing significant memory reduction and some runtime
// benefit over GeneralHistKey. Since 3 symbols are enough to track history
// in a 4-gram model, this optimized key is used for smaller models with up
// to 4-gram and symbol values up to 2^21-1.
//
// See GeneralHistKey for interface requirements of a key class.
class OptimizedHistKey {
public:
enum {
kShift = 21, // 21 * 3 = 63 bits for data.
kMaxData = (1 << kShift) - 1
};
template<class InputIt>
OptimizedHistKey(InputIt begin, InputIt end) : data_(0) {
for (uint32 shift = 0; begin != end; ++begin, shift += kShift) {
data_ |= static_cast<uint64>(*begin) << shift;
}
}
OptimizedHistKey() : data_(0) { }
OptimizedHistKey Tails() const {
return OptimizedHistKey(data_ >> kShift);
}
friend bool operator==(const OptimizedHistKey& a, const OptimizedHistKey& b) {
return a.data_ == b.data_;
}
struct HashType : public std::unary_function<OptimizedHistKey, size_t> {
size_t operator()(const OptimizedHistKey& key) const { return key.data_; }
};
private:
explicit OptimizedHistKey(uint64 data) : data_(data) { }
uint64 data_;
};
} // namespace
template <class HistKey>
class ArpaLmCompilerImpl : public ArpaLmCompilerImplInterface {
public:
ArpaLmCompilerImpl(ArpaLmCompiler* parent, fst::StdVectorFst* fst,
Symbol sub_eps);
virtual void ConsumeNGram(const NGram &ngram, bool is_highest);
private:
StateId AddStateWithBackoff(HistKey key, float backoff);
void CreateBackoff(HistKey key, StateId state, float weight);
ArpaLmCompiler *parent_; // Not owned.
fst::StdVectorFst* fst_; // Not owned.
Symbol bos_symbol_;
Symbol eos_symbol_;
Symbol sub_eps_;
StateId eos_state_;
typedef unordered_map<HistKey, StateId,
typename HistKey::HashType> HistoryMap;
HistoryMap history_;
};
template <class HistKey>
ArpaLmCompilerImpl<HistKey>::ArpaLmCompilerImpl(
ArpaLmCompiler* parent, fst::StdVectorFst* fst, Symbol sub_eps)
: parent_(parent), fst_(fst), bos_symbol_(parent->Options().bos_symbol),
eos_symbol_(parent->Options().eos_symbol), sub_eps_(sub_eps) {
// The algorithm maintains state per history. The 0-gram is a special state
// for empty history. All unigrams (including BOS) backoff into this state.
StateId zerogram = fst_->AddState();
history_[HistKey()] = zerogram;
// Also, if </s> is not treated as epsilon, create a common end state for
// all transitions accepting the </s>, since they do not back off. This small
// optimization saves about 2% states in an average grammar.
if (sub_eps_ == 0) {
eos_state_ = fst_->AddState();
fst_->SetFinal(eos_state_, 0);
}
}
template <class HistKey>
void ArpaLmCompilerImpl<HistKey>::ConsumeNGram(const NGram &ngram,
bool is_highest) {
// Generally, we do the following. Suppose we are adding an n-gram "A B
// C". Then find the node for "A B", add a new node for "A B C", and connect
// them with the arc accepting "C" with the specified weight. Also, add a
// backoff arc from the new "A B C" node to its backoff state "B C".
//
// Two notable exceptions are the highest order n-grams, and final n-grams.
//
// When adding a highest order n-gram (e. g., our "A B C" is in a 3-gram LM),
// the following optimization is performed. There is no point adding a node
// for "A B C" with a "C" arc from "A B", since there will be no other
// arcs ingoing to this node, and an epsilon backoff arc into the backoff
// model "B C", with the weight of \bar{1}. To save a node, create an arc
// accepting "C" directly from "A B" to "B C". This saves as many nodes
// as there are the highest order n-grams, which is typically about half
// the size of a large 3-gram model.
//
// Indeed, this does not apply to n-grams ending in EOS, since they do not
// back off. These are special, as they do not have a back-off state, and
// the node for "(..anything..) </s>" is always final. These are handled
// in one of the two possible ways, If symbols <s> and </s> are being
// replaced by epsilons, neither node nor arc is created, and the logprob
// of the n-gram is applied to its source node as final weight. If <s> and
// </s> are preserved, then a special final node for </s> is allocated and
// used as the destination of the "</s>" acceptor arc.
HistKey heads(ngram.words.begin(), ngram.words.end() - 1);
typename HistoryMap::iterator source_it = history_.find(heads);
if (source_it == history_.end()) {
// There was no "A B", therefore the probability of "A B C" is zero.
// Print a warning and discard current n-gram.
if (parent_->ShouldWarn())
KALDI_WARN << parent_->LineReference()
<< " skipped: no parent (n-1)-gram exists";
return;
}
StateId source = source_it->second;
StateId dest;
Symbol sym = ngram.words.back();
float weight = -ngram.logprob;
if (sym == sub_eps_ || sym == 0) {
KALDI_ERR << " <eps> or disambiguation symbol " << sym << "found in the ARPA file. ";
}
if (sym == eos_symbol_) {
if (sub_eps_ == 0) {
// Keep </s> as a real symbol when not substituting.
dest = eos_state_;
} else {
// Treat </s> as if it was epsilon: mark source final, with the weight
// of the n-gram.
fst_->SetFinal(source, weight);
return;
}
} else {
// For the highest order n-gram, this may find an existing state, for
// non-highest, will create one (unless there are duplicate n-grams
// in the grammar, which cannot be reliably detected if highest order,
// so we better do not do that at all).
dest = AddStateWithBackoff(
HistKey(ngram.words.begin() + (is_highest ? 1 : 0),
ngram.words.end()),
-ngram.backoff);
}
if (sym == bos_symbol_) {
weight = 0; // Accepting <s> is always free.
if (sub_eps_ == 0) {
// <s> is as a real symbol, only accepted in the start state.
source = fst_->AddState();
fst_->SetStart(source);
} else {
// The new state for <s> unigram history *is* the start state.
fst_->SetStart(dest);
return;
}
}
// Add arc from source to dest, whichever way it was found.
fst_->AddArc(source, fst::StdArc(sym, sym, weight, dest));
return;
}
// Find or create a new state for n-gram defined by key, and ensure it has a
// backoff transition. The key is either the current n-gram for all but
// highest orders, or the tails of the n-gram for the highest order. The
// latter arises from the chain-collapsing optimization described above.
template <class HistKey>
StateId ArpaLmCompilerImpl<HistKey>::AddStateWithBackoff(HistKey key,
float backoff) {
typename HistoryMap::iterator dest_it = history_.find(key);
if (dest_it != history_.end()) {
// Found an existing state in the history map. Invariant: if the state in
// the map, then its backoff arc is in the FST. We are done.
return dest_it->second;
}
// Otherwise create a new state and its backoff arc, and register in the map.
StateId dest = fst_->AddState();
history_[key] = dest;
CreateBackoff(key.Tails(), dest, backoff);
return dest;
}
// Create a backoff arc for a state. Key is a backoff destination that may or
// may not exist. When the destination is not found, naturally fall back to
// the lower order model, and all the way down until one is found (since the
// 0-gram model is always present, the search is guaranteed to terminate).
template <class HistKey>
inline void ArpaLmCompilerImpl<HistKey>::CreateBackoff(
HistKey key, StateId state, float weight) {
typename HistoryMap::iterator dest_it = history_.find(key);
while (dest_it == history_.end()) {
key = key.Tails();
dest_it = history_.find(key);
}
// The arc should transduce either <eos> or #0 to <eps>, depending on the
// epsilon substitution mode. This is the only case when input and output
// label may differ.
fst_->AddArc(state, fst::StdArc(sub_eps_, 0, weight, dest_it->second));
}
ArpaLmCompiler::~ArpaLmCompiler() {
if (impl_ != NULL)
delete impl_;
}
void ArpaLmCompiler::HeaderAvailable() {
KALDI_ASSERT(impl_ == NULL);
// Use optimized implementation if the grammar is 4-gram or less, and the
// maximum attained symbol id will fit into the optimized range.
int64 max_symbol = 0;
if (Symbols() != NULL)
max_symbol = Symbols()->AvailableKey() - 1;
// If augmenting the symbol table, assume the worst case when all words in
// the model being read are novel.
if (Options().oov_handling == ArpaParseOptions::kAddToSymbols)
max_symbol += NgramCounts()[0];
if (NgramCounts().size() <= 4 && max_symbol < OptimizedHistKey::kMaxData) {
impl_ = new ArpaLmCompilerImpl<OptimizedHistKey>(this, &fst_, sub_eps_);
} else {
impl_ = new ArpaLmCompilerImpl<GeneralHistKey>(this, &fst_, sub_eps_);
KALDI_LOG << "Reverting to slower state tracking because model is large: "
<< NgramCounts().size() << "-gram with symbols up to "
<< max_symbol;
}
}
void ArpaLmCompiler::ConsumeNGram(const NGram &ngram) {
// <s> is invalid in tails, </s> in heads of an n-gram.
for (int i = 0; i < ngram.words.size(); ++i) {
if ((i > 0 && ngram.words[i] == Options().bos_symbol) ||
(i + 1 < ngram.words.size()
&& ngram.words[i] == Options().eos_symbol)) {
if (ShouldWarn())
KALDI_WARN << LineReference()
<< " skipped: n-gram has invalid BOS/EOS placement";
return;
}
}
bool is_highest = ngram.words.size() == NgramCounts().size();
impl_->ConsumeNGram(ngram, is_highest);
}
void ArpaLmCompiler::RemoveRedundantStates() {
fst::StdArc::Label backoff_symbol = sub_eps_;
if (backoff_symbol == 0) {
// The method of removing redundant states implemented in this function
// leads to slow determinization of L o G when people use the older style of
// usage of arpa2fst where the --disambig-symbol option was not specified.
// The issue seems to be that it creates a non-deterministic FST, while G is
// supposed to be deterministic. By 'return'ing below, we just disable this
// method if people were using an older script. This method isn't really
// that consequential anyway, and people will move to the newer-style
// scripts (see current utils/format_lm.sh), so this isn't much of a
// problem.
return;
}
fst::StdArc::StateId num_states = fst_.NumStates();
// replace the #0 symbols on the input of arcs out of redundant states (states
// that are not final and have only a backoff arc leaving them), with <eps>.
for (fst::StdArc::StateId state = 0; state < num_states; state++) {
if (fst_.NumArcs(state) == 1 && fst_.Final(state) == fst::TropicalWeight::Zero()) {
fst::MutableArcIterator<fst::StdVectorFst> iter(&fst_, state);
fst::StdArc arc = iter.Value();
if (arc.ilabel == backoff_symbol) {
arc.ilabel = 0;
iter.SetValue(arc);
}
}
}
// we could call fst::RemoveEps, and it would have the same effect in normal
// cases, where backoff_symbol != 0 and there are no epsilons in unexpected
// places, but RemoveEpsLocal is a bit safer in case something weird is going
// on; it guarantees not to blow up the FST.
fst::RemoveEpsLocal(&fst_);
KALDI_LOG << "Reduced num-states from " << num_states << " to "
<< fst_.NumStates();
}
void ArpaLmCompiler::Check() const {
if (fst_.Start() == fst::kNoStateId) {
KALDI_ERR << "Arpa file did not contain the beginning-of-sentence symbol "
<< Symbols()->Find(Options().bos_symbol) << ".";
}
}
void ArpaLmCompiler::ReadComplete() {
fst_.SetInputSymbols(Symbols());
fst_.SetOutputSymbols(Symbols());
RemoveRedundantStates();
Check();
}
} // namespace kaldi