You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/common/matrix/kaldi-matrix.h

907 lines
35 KiB

// matrix/kaldi-matrix.h
// Copyright 2009-2011 Ondrej Glembek; Microsoft Corporation; Lukas Burget;
// Saarland University; Petr Schwarz; Yanmin Qian;
// Karel Vesely; Go Vivace Inc.; Haihua Xu
// 2017 Shiyin Kang
// 2019 Yiwen Shao
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_MATRIX_KALDI_MATRIX_H_
#define KALDI_MATRIX_KALDI_MATRIX_H_ 1
#include <algorithm>
#include "matrix/matrix-common.h"
namespace kaldi {
/// @{ \addtogroup matrix_funcs_scalar
/// \addtogroup matrix_group
/// @{
/// Base class which provides matrix operations not involving resizing
/// or allocation. Classes Matrix and SubMatrix inherit from it and take care
/// of allocation and resizing.
template <typename Real>
class MatrixBase {
public:
// so this child can access protected members of other instances.
friend class Matrix<Real>;
friend class SubMatrix<Real>;
// friend declarations for CUDA matrices (see ../cudamatrix/)
/// Returns number of rows (or zero for empty matrix).
inline MatrixIndexT NumRows() const { return num_rows_; }
/// Returns number of columns (or zero for empty matrix).
inline MatrixIndexT NumCols() const { return num_cols_; }
/// Stride (distance in memory between each row). Will be >= NumCols.
inline MatrixIndexT Stride() const { return stride_; }
/// Returns size in bytes of the data held by the matrix.
size_t SizeInBytes() const {
return static_cast<size_t>(num_rows_) * static_cast<size_t>(stride_) *
sizeof(Real);
}
/// Gives pointer to raw data (const).
inline const Real *Data() const { return data_; }
/// Gives pointer to raw data (non-const).
inline Real *Data() { return data_; }
/// Returns pointer to data for one row (non-const)
inline Real *RowData(MatrixIndexT i) {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return data_ + i * stride_;
}
/// Returns pointer to data for one row (const)
inline const Real *RowData(MatrixIndexT i) const {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return data_ + i * stride_;
}
/// Indexing operator, non-const
/// (only checks sizes if compiled with -DKALDI_PARANOID)
inline Real &operator()(MatrixIndexT r, MatrixIndexT c) {
KALDI_PARANOID_ASSERT(
static_cast<UnsignedMatrixIndexT>(r) <
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
static_cast<UnsignedMatrixIndexT>(c) <
static_cast<UnsignedMatrixIndexT>(num_cols_));
return *(data_ + r * stride_ + c);
}
/// Indexing operator, provided for ease of debugging (gdb doesn't work
/// with parenthesis operator).
Real &Index(MatrixIndexT r, MatrixIndexT c) { return (*this)(r, c); }
/// Indexing operator, const
/// (only checks sizes if compiled with -DKALDI_PARANOID)
inline const Real operator()(MatrixIndexT r, MatrixIndexT c) const {
KALDI_PARANOID_ASSERT(
static_cast<UnsignedMatrixIndexT>(r) <
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
static_cast<UnsignedMatrixIndexT>(c) <
static_cast<UnsignedMatrixIndexT>(num_cols_));
return *(data_ + r * stride_ + c);
}
/* Basic setting-to-special values functions. */
/// Sets matrix to zero.
void SetZero();
/// Sets all elements to a specific value.
void Set(Real);
/// Sets to zero, except ones along diagonal [for non-square matrices too]
/// Copy given matrix. (no resize is done).
template <typename OtherReal>
void CopyFromMat(const MatrixBase<OtherReal> &M,
MatrixTransposeType trans = kNoTrans);
/// Copy from compressed matrix.
// void CopyFromMat(const CompressedMatrix &M);
/// Copy given tpmatrix. (no resize is done).
// template<typename OtherReal>
// void CopyFromTp(const TpMatrix<OtherReal> &M,
// MatrixTransposeType trans = kNoTrans);
/// Copy from CUDA matrix. Implemented in ../cudamatrix/cu-matrix.h
// template<typename OtherReal>
// void CopyFromMat(const CuMatrixBase<OtherReal> &M,
// MatrixTransposeType trans = kNoTrans);
/// This function has two modes of operation. If v.Dim() == NumRows() *
/// NumCols(), then treats the vector as a row-by-row concatenation of a
/// matrix and copies to *this.
/// if v.Dim() == NumCols(), it sets each row of *this to a copy of v.
void CopyRowsFromVec(const VectorBase<Real> &v);
/// This version of CopyRowsFromVec is implemented in
/// ../cudamatrix/cu-vector.cc
// void CopyRowsFromVec(const CuVectorBase<Real> &v);
template <typename OtherReal>
void CopyRowsFromVec(const VectorBase<OtherReal> &v);
/// Copies vector into matrix, column-by-column.
/// Note that rv.Dim() must either equal NumRows()*NumCols() or NumRows();
/// this has two modes of operation.
void CopyColsFromVec(const VectorBase<Real> &v);
/// Copy vector into specific column of matrix.
void CopyColFromVec(const VectorBase<Real> &v, const MatrixIndexT col);
/// Copy vector into specific row of matrix.
void CopyRowFromVec(const VectorBase<Real> &v, const MatrixIndexT row);
/// Copy vector into diagonal of matrix.
void CopyDiagFromVec(const VectorBase<Real> &v);
/* Accessing of sub-parts of the matrix. */
/// Return specific row of matrix [const].
inline const SubVector<Real> Row(MatrixIndexT i) const {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return SubVector<Real>(data_ + (i * stride_), NumCols());
}
/// Return specific row of matrix.
inline SubVector<Real> Row(MatrixIndexT i) {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return SubVector<Real>(data_ + (i * stride_), NumCols());
}
/// Return a sub-part of matrix.
inline SubMatrix<Real> Range(const MatrixIndexT row_offset,
const MatrixIndexT num_rows,
const MatrixIndexT col_offset,
const MatrixIndexT num_cols) const {
return SubMatrix<Real>(
*this, row_offset, num_rows, col_offset, num_cols);
}
inline SubMatrix<Real> RowRange(const MatrixIndexT row_offset,
const MatrixIndexT num_rows) const {
return SubMatrix<Real>(*this, row_offset, num_rows, 0, num_cols_);
}
inline SubMatrix<Real> ColRange(const MatrixIndexT col_offset,
const MatrixIndexT num_cols) const {
return SubMatrix<Real>(*this, 0, num_rows_, col_offset, num_cols);
}
/*
/// Returns sum of all elements in matrix.
Real Sum() const;
/// Returns trace of matrix.
Real Trace(bool check_square = true) const;
// If check_square = true, will crash if matrix is not square.
/// Returns maximum element of matrix.
Real Max() const;
/// Returns minimum element of matrix.
Real Min() const;
/// Element by element multiplication with a given matrix.
void MulElements(const MatrixBase<Real> &A);
/// Divide each element by the corresponding element of a given matrix.
void DivElements(const MatrixBase<Real> &A);
/// Multiply each element with a scalar value.
void Scale(Real alpha);
/// Set, element-by-element, *this = max(*this, A)
void Max(const MatrixBase<Real> &A);
/// Set, element-by-element, *this = min(*this, A)
void Min(const MatrixBase<Real> &A);
/// Equivalent to (*this) = (*this) * diag(scale). Scaling
/// each column by a scalar taken from that dimension of the vector.
void MulColsVec(const VectorBase<Real> &scale);
/// Equivalent to (*this) = diag(scale) * (*this). Scaling
/// each row by a scalar taken from that dimension of the vector.
void MulRowsVec(const VectorBase<Real> &scale);
/// Divide each row into src.NumCols() equal groups, and then scale i'th
row's
/// j'th group of elements by src(i, j). Requires src.NumRows() ==
/// this->NumRows() and this->NumCols() % src.NumCols() == 0.
void MulRowsGroupMat(const MatrixBase<Real> &src);
/// Returns logdet of matrix.
Real LogDet(Real *det_sign = NULL) const;
/// matrix inverse.
/// if inverse_needed = false, will fill matrix with garbage.
/// (only useful if logdet wanted).
void Invert(Real *log_det = NULL, Real *det_sign = NULL,
bool inverse_needed = true);
/// matrix inverse [double].
/// if inverse_needed = false, will fill matrix with garbage
/// (only useful if logdet wanted).
/// Does inversion in double precision even if matrix was not double.
void InvertDouble(Real *LogDet = NULL, Real *det_sign = NULL,
bool inverse_needed = true);
*/
/// Inverts all the elements of the matrix
void InvertElements();
/*
/// Transpose the matrix. This one is only
/// applicable to square matrices (the one in the
/// Matrix child class works also for non-square.
void Transpose();
*/
/// Copies column r from column indices[r] of src.
/// As a special case, if indexes[i] == -1, sets column i to zero.
/// all elements of "indices" must be in [-1, src.NumCols()-1],
/// and src.NumRows() must equal this.NumRows()
void CopyCols(const MatrixBase<Real> &src, const MatrixIndexT *indices);
/// Copies row r from row indices[r] of src (does nothing
/// As a special case, if indexes[i] == -1, sets row i to zero.
/// all elements of "indices" must be in [-1, src.NumRows()-1],
/// and src.NumCols() must equal this.NumCols()
void CopyRows(const MatrixBase<Real> &src, const MatrixIndexT *indices);
/// Add column indices[r] of src to column r.
/// As a special case, if indexes[i] == -1, skip column i
/// indices.size() must equal this->NumCols(),
/// all elements of "reorder" must be in [-1, src.NumCols()-1],
/// and src.NumRows() must equal this.NumRows()
// void AddCols(const MatrixBase<Real> &src,
// const MatrixIndexT *indices);
/// Copies row r of this matrix from an array of floats at the location
/// given
/// by src[r]. If any src[r] is NULL then this.Row(r) will be set to zero.
/// Note: we are using "pointer to const pointer to const object" for "src",
/// because we may create "src" by calling Data() of const CuArray
void CopyRows(const Real *const *src);
/// Copies row r of this matrix to the array of floats at the location given
/// by dst[r]. If dst[r] is NULL, does not copy anywhere. Requires that
/// none
/// of the memory regions pointed to by the pointers in "dst" overlap (e.g.
/// none of the pointers should be the same).
void CopyToRows(Real *const *dst) const;
/// Does for each row r, this.Row(r) += alpha * src.row(indexes[r]).
/// If indexes[r] < 0, does not add anything. all elements of "indexes" must
/// be in [-1, src.NumRows()-1], and src.NumCols() must equal
/// this.NumCols().
// void AddRows(Real alpha,
// const MatrixBase<Real> &src,
// const MatrixIndexT *indexes);
/// Does for each row r, this.Row(r) += alpha * src[r], treating src[r] as
/// the
/// beginning of a region of memory representing a vector of floats, of the
/// same length as this.NumCols(). If src[r] is NULL, does not add anything.
// void AddRows(Real alpha, const Real *const *src);
/// For each row r of this matrix, adds it (times alpha) to the array of
/// floats at the location given by dst[r]. If dst[r] is NULL, does not do
/// anything for that row. Requires that none of the memory regions pointed
/// to by the pointers in "dst" overlap (e.g. none of the pointers should be
/// the same).
// void AddToRows(Real alpha, Real *const *dst) const;
/// For each row i of *this, adds this->Row(i) to
/// dst->Row(indexes(i)) if indexes(i) >= 0, else do nothing.
/// Requires that all the indexes[i] that are >= 0
/// be distinct, otherwise the behavior is undefined.
// void AddToRows(Real alpha,
// const MatrixIndexT *indexes,
// MatrixBase<Real> *dst) const;
/*
inline void ApplyPow(Real power) {
this -> Pow(*this, power);
}
inline void ApplyPowAbs(Real power, bool include_sign=false) {
this -> PowAbs(*this, power, include_sign);
}
inline void ApplyHeaviside() {
this -> Heaviside(*this);
}
inline void ApplyFloor(Real floor_val) {
this -> Floor(*this, floor_val);
}
inline void ApplyCeiling(Real ceiling_val) {
this -> Ceiling(*this, ceiling_val);
}
inline void ApplyExp() {
this -> Exp(*this);
}
inline void ApplyExpSpecial() {
this -> ExpSpecial(*this);
}
inline void ApplyExpLimited(Real lower_limit, Real upper_limit) {
this -> ExpLimited(*this, lower_limit, upper_limit);
}
inline void ApplyLog() {
this -> Log(*this);
}
*/
/// Eigenvalue Decomposition of a square NxN matrix into the form (*this) =
/// P D
/// P^{-1}. Be careful: the relationship of D to the eigenvalues we output
/// is
/// slightly complicated, due to the need for P to be real. In the
/// symmetric
/// case D is diagonal and real, but in
/// the non-symmetric case there may be complex-conjugate pairs of
/// eigenvalues.
/// In this case, for the equation (*this) = P D P^{-1} to hold, D must
/// actually
/// be block diagonal, with 2x2 blocks corresponding to any such pairs. If
/// a
/// pair is lambda +- i*mu, D will have a corresponding 2x2 block
/// [lambda, mu; -mu, lambda].
/// Note that if the input matrix (*this) is non-invertible, P may not be
/// invertible
/// so in this case instead of the equation (*this) = P D P^{-1} holding, we
/// have
/// instead (*this) P = P D.
///
/// The non-member function CreateEigenvalueMatrix creates D from eigs_real
/// and eigs_imag.
// void Eig(MatrixBase<Real> *P,
// VectorBase<Real> *eigs_real,
// VectorBase<Real> *eigs_imag) const;
/// The Power method attempts to take the matrix to a power using a method
/// that
/// works in general for fractional and negative powers. The input matrix
/// must
/// be invertible and have reasonable condition (or we don't guarantee the
/// results. The method is based on the eigenvalue decomposition. It will
/// return false and leave the matrix unchanged, if at entry the matrix had
/// real negative eigenvalues (or if it had zero eigenvalues and the power
/// was
/// negative).
// bool Power(Real pow);
/** Singular value decomposition
Major limitations:
For nonsquare matrices, we assume m>=n (NumRows >= NumCols), and we
return
the "skinny" Svd, i.e. the matrix in the middle is diagonal, and the
one on the left is rectangular.
In Svd, *this = U*diag(S)*Vt.
Null pointers for U and/or Vt at input mean we do not want that output.
We
expect that S.Dim() == m, U is either NULL or m by n,
and v is either NULL or n by n.
The singular values are not sorted (use SortSvd for that). */
// void DestructiveSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
// MatrixBase<Real> *Vt); // Destroys calling matrix.
/// Compute SVD (*this) = U diag(s) Vt. Note that the V in the call is
/// already
/// transposed; the normal formulation is U diag(s) V^T.
/// Null pointers for U or V mean we don't want that output (this saves
/// compute). The singular values are not sorted (use SortSvd for that).
// void Svd(VectorBase<Real> *s, MatrixBase<Real> *U,
// MatrixBase<Real> *Vt) const;
/// Compute SVD but only retain the singular values.
// void Svd(VectorBase<Real> *s) const { Svd(s, NULL, NULL); }
/// Returns smallest singular value.
// Real MinSingularValue() const {
// Vector<Real> tmp(std::min(NumRows(), NumCols()));
// Svd(&tmp);
// return tmp.Min();
//}
// void TestUninitialized() const; // This function is designed so that if
// any element
// if the matrix is uninitialized memory, valgrind will complain.
/// Returns condition number by computing Svd. Works even if cols > rows.
/// Returns infinity if all singular values are zero.
/*
Real Cond() const;
/// Returns true if matrix is Symmetric.
bool IsSymmetric(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if matrix is Diagonal.
bool IsDiagonal(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if the matrix is all zeros, except for ones on diagonal.
(it
/// does not have to be square). More specifically, this function returns
/// false if for any i, j, (*this)(i, j) differs by more than cutoff from
the
/// expression (i == j ? 1 : 0).
bool IsUnit(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if matrix is all zeros.
bool IsZero(Real cutoff = 1.0e-05) const; // replace magic number
/// Frobenius norm, which is the sqrt of sum of square elements. Same as
Schatten 2-norm,
/// or just "2-norm".
Real FrobeniusNorm() const;
/// Returns true if ((*this)-other).FrobeniusNorm()
/// <= tol * (*this).FrobeniusNorm().
bool ApproxEqual(const MatrixBase<Real> &other, float tol = 0.01) const;
/// Tests for exact equality. It's usually preferable to use ApproxEqual.
bool Equal(const MatrixBase<Real> &other) const;
/// largest absolute value.
Real LargestAbsElem() const; // largest absolute value.
/// Returns log(sum(exp())) without exp overflow
/// If prune > 0.0, it uses a pruning beam, discarding
/// terms less than (max - prune). Note: in future
/// we may change this so that if prune = 0.0, it takes
/// the max, so use -1 if you don't want to prune.
Real LogSumExp(Real prune = -1.0) const;
/// Apply soft-max to the collection of all elements of the
/// matrix and return normalizer (log sum of exponentials).
Real ApplySoftMax();
/// Set each element to the sigmoid of the corresponding element of "src".
void Sigmoid(const MatrixBase<Real> &src);
/// Sets each element to the Heaviside step function (x > 0 ? 1 : 0) of the
/// corresponding element in "src". Note: in general you can make different
/// choices for x = 0, but for now please leave it as it (i.e. returning
zero)
/// because it affects the RectifiedLinearComponent in the neural net code.
void Heaviside(const MatrixBase<Real> &src);
void Exp(const MatrixBase<Real> &src);
void Pow(const MatrixBase<Real> &src, Real power);
void Log(const MatrixBase<Real> &src);
/// Apply power to the absolute value of each element.
/// If include_sign is true, the result will be multiplied with
/// the sign of the input value.
/// If the power is negative and the input to the power is zero,
/// The output will be set zero. If include_sign is true, it will
/// multiply the result by the sign of the input.
void PowAbs(const MatrixBase<Real> &src, Real power, bool
include_sign=false);
void Floor(const MatrixBase<Real> &src, Real floor_val);
void Ceiling(const MatrixBase<Real> &src, Real ceiling_val);
/// For each element x of the matrix, set it to
/// (x < 0 ? exp(x) : x + 1). This function is used
/// in our RNNLM training.
void ExpSpecial(const MatrixBase<Real> &src);
/// This is equivalent to running:
/// Floor(src, lower_limit);
/// Ceiling(src, upper_limit);
/// Exp(src)
void ExpLimited(const MatrixBase<Real> &src, Real lower_limit, Real
upper_limit);
/// Set each element to y = log(1 + exp(x))
void SoftHinge(const MatrixBase<Real> &src);
/// Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j^(power))^(1 /
p).
/// Requires src.NumRows() == this->NumRows() and src.NumCols() %
this->NumCols() == 0.
void GroupPnorm(const MatrixBase<Real> &src, Real power);
/// Calculate derivatives for the GroupPnorm function above...
/// if "input" is the input to the GroupPnorm function above (i.e. the "src"
variable),
/// and "output" is the result of the computation (i.e. the "this" of that
function
/// call), and *this has the same dimension as "input", then it sets each
element
/// of *this to the derivative d(output-elem)/d(input-elem) for each element
of "input", where
/// "output-elem" is whichever element of output depends on that input
element.
void GroupPnormDeriv(const MatrixBase<Real> &input, const MatrixBase<Real>
&output,
Real power);
/// Apply the function y(i) = (max_{j = i*G}^{(i+1)*G-1} x_j
/// Requires src.NumRows() == this->NumRows() and src.NumCols() %
this->NumCols() == 0.
void GroupMax(const MatrixBase<Real> &src);
/// Calculate derivatives for the GroupMax function above, where
/// "input" is the input to the GroupMax function above (i.e. the "src"
variable),
/// and "output" is the result of the computation (i.e. the "this" of that
function
/// call), and *this must have the same dimension as "input". Each element
/// of *this will be set to 1 if the corresponding input equals the output
of
/// the group, and 0 otherwise. The equals the function derivative where it
is
/// defined (it's not defined where multiple inputs in the group are equal
to the output).
void GroupMaxDeriv(const MatrixBase<Real> &input, const MatrixBase<Real>
&output);
/// Set each element to the tanh of the corresponding element of "src".
void Tanh(const MatrixBase<Real> &src);
// Function used in backpropagating derivatives of the sigmoid function:
// element-by-element, set *this = diff * value * (1.0 - value).
void DiffSigmoid(const MatrixBase<Real> &value,
const MatrixBase<Real> &diff);
// Function used in backpropagating derivatives of the tanh function:
// element-by-element, set *this = diff * (1.0 - value^2).
void DiffTanh(const MatrixBase<Real> &value,
const MatrixBase<Real> &diff);
*/
/** Uses Svd to compute the eigenvalue decomposition of a symmetric positive
* semi-definite matrix: (*this) = rP * diag(rS) * rP^T, with rP an
* orthogonal matrix so rP^{-1} = rP^T. Throws exception if input was not
* positive semi-definite (check_thresh controls how stringent the check is;
* set it to 2 to ensure it won't ever complain, but it will zero out
* negative
* dimensions in your matrix.
*
* Caution: if you want the eigenvalues, it may make more sense to convert
* to
* SpMatrix and use Eig() function there, which uses eigenvalue
* decomposition
* directly rather than SVD.
*/
/// stream read.
/// Use instead of stream<<*this, if you want to add to existing contents.
// Will throw exception on failure.
void Read(std::istream &in, bool binary);
/// write to stream.
void Write(std::ostream &out, bool binary) const;
// Below is internal methods for Svd, user does not have to know about this.
protected:
/// Initializer, callable only from child.
explicit MatrixBase(Real *data,
MatrixIndexT cols,
MatrixIndexT rows,
MatrixIndexT stride)
: data_(data), num_cols_(cols), num_rows_(rows), stride_(stride) {
KALDI_ASSERT_IS_FLOATING_TYPE(Real);
}
/// Initializer, callable only from child.
/// Empty initializer, for un-initialized matrix.
explicit MatrixBase() : data_(NULL) { KALDI_ASSERT_IS_FLOATING_TYPE(Real); }
// Make sure pointers to MatrixBase cannot be deleted.
~MatrixBase() {}
/// A workaround that allows SubMatrix to get a pointer to non-const data
/// for const Matrix. Unfortunately C++ does not allow us to declare a
/// "public const" inheritance or anything like that, so it would require
/// a lot of work to make the SubMatrix class totally const-correct--
/// we would have to override many of the Matrix functions.
inline Real *Data_workaround() const { return data_; }
/// data memory area
Real *data_;
/// these attributes store the real matrix size as it is stored in memory
/// including memalignment
MatrixIndexT num_cols_; /// < Number of columns
MatrixIndexT num_rows_; /// < Number of rows
/** True number of columns for the internal matrix. This number may differ
* from num_cols_ as memory alignment might be used. */
MatrixIndexT stride_;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(MatrixBase);
};
/// A class for storing matrices.
template <typename Real>
class Matrix : public MatrixBase<Real> {
public:
/// Empty constructor.
Matrix();
/// Basic constructor.
Matrix(const MatrixIndexT r,
const MatrixIndexT c,
MatrixResizeType resize_type = kSetZero,
MatrixStrideType stride_type = kDefaultStride)
: MatrixBase<Real>() {
Resize(r, c, resize_type, stride_type);
}
/// Swaps the contents of *this and *other. Shallow swap.
void Swap(Matrix<Real> *other);
/// Constructor from any MatrixBase. Can also copy with transpose.
/// Allocates new memory.
explicit Matrix(const MatrixBase<Real> &M,
MatrixTransposeType trans = kNoTrans);
/// Same as above, but need to avoid default copy constructor.
Matrix(const Matrix<Real> &M); // (cannot make explicit)
/// Copy constructor: as above, but from another type.
template <typename OtherReal>
explicit Matrix(const MatrixBase<OtherReal> &M,
MatrixTransposeType trans = kNoTrans);
/// Copy constructor taking TpMatrix...
// template <typename OtherReal>
// explicit Matrix(const TpMatrix<OtherReal> & M,
// MatrixTransposeType trans = kNoTrans) : MatrixBase<Real>() {
// if (trans == kNoTrans) {
// Resize(M.NumRows(), M.NumCols(), kUndefined);
// this->CopyFromTp(M);
//} else {
// Resize(M.NumCols(), M.NumRows(), kUndefined);
// this->CopyFromTp(M, kTrans);
//}
//}
/// read from stream.
// Unlike one in base, allows resizing.
void Read(std::istream &in, bool binary);
/// Remove a specified row.
void RemoveRow(MatrixIndexT i);
/// Transpose the matrix. Works for non-square
/// matrices as well as square ones.
// void Transpose();
/// Distructor to free matrices.
~Matrix() { Destroy(); }
/// Sets matrix to a specified size (zero is OK as long as both r and c are
/// zero). The value of the new data depends on resize_type:
/// -if kSetZero, the new data will be zero
/// -if kUndefined, the new data will be undefined
/// -if kCopyData, the new data will be the same as the old data in any
/// shared positions, and zero elsewhere.
///
/// You can set stride_type to kStrideEqualNumCols to force the stride
/// to equal the number of columns; by default it is set so that the stride
/// in bytes is a multiple of 16.
///
/// This function takes time proportional to the number of data elements.
void Resize(const MatrixIndexT r,
const MatrixIndexT c,
MatrixResizeType resize_type = kSetZero,
MatrixStrideType stride_type = kDefaultStride);
/// Assignment operator that takes MatrixBase.
Matrix<Real> &operator=(const MatrixBase<Real> &other) {
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
MatrixBase<Real>::NumCols() != other.NumCols())
Resize(other.NumRows(), other.NumCols(), kUndefined);
MatrixBase<Real>::CopyFromMat(other);
return *this;
}
/// Assignment operator. Needed for inclusion in std::vector.
Matrix<Real> &operator=(const Matrix<Real> &other) {
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
MatrixBase<Real>::NumCols() != other.NumCols())
Resize(other.NumRows(), other.NumCols(), kUndefined);
MatrixBase<Real>::CopyFromMat(other);
return *this;
}
private:
/// Deallocates memory and sets to empty matrix (dimension 0, 0).
void Destroy();
/// Init assumes the current class contents are invalid (i.e. junk or have
/// already been freed), and it sets the matrix to newly allocated memory
/// with
/// the specified number of rows and columns. r == c == 0 is acceptable.
/// The data
/// memory contents will be undefined.
void Init(const MatrixIndexT r,
const MatrixIndexT c,
const MatrixStrideType stride_type);
};
/// @} end "addtogroup matrix_group"
/// \addtogroup matrix_funcs_io
/// @{
/// A structure containing the HTK header.
/// [TODO: change the style of the variables to Kaldi-compliant]
template <typename Real>
class SubMatrix : public MatrixBase<Real> {
public:
// Initialize a SubMatrix from part of a matrix; this is
// a bit like A(b:c, d:e) in Matlab.
// This initializer is against the proper semantics of "const", since
// SubMatrix can change its contents. It would be hard to implement
// a "const-safe" version of this class.
SubMatrix(const MatrixBase<Real> &T,
const MatrixIndexT ro, // row offset, 0 < ro < NumRows()
const MatrixIndexT r, // number of rows, r > 0
const MatrixIndexT co, // column offset, 0 < co < NumCols()
const MatrixIndexT c); // number of columns, c > 0
// This initializer is mostly intended for use in CuMatrix and related
// classes. Be careful!
SubMatrix(Real *data,
MatrixIndexT num_rows,
MatrixIndexT num_cols,
MatrixIndexT stride);
~SubMatrix<Real>() {}
/// This type of constructor is needed for Range() to work [in Matrix base
/// class]. Cannot make it explicit.
SubMatrix<Real>(const SubMatrix &other)
: MatrixBase<Real>(
other.data_, other.num_cols_, other.num_rows_, other.stride_) {}
private:
/// Disallow assignment.
SubMatrix<Real> &operator=(const SubMatrix<Real> &other);
};
/// @} End of "addtogroup matrix_funcs_io".
/// \addtogroup matrix_funcs_scalar
/// @{
// Some declarations. These are traces of products.
/************************
template<typename Real>
bool ApproxEqual(const MatrixBase<Real> &A,
const MatrixBase<Real> &B, Real tol = 0.01) {
return A.ApproxEqual(B, tol);
}
template<typename Real>
inline void AssertEqual(const MatrixBase<Real> &A, const MatrixBase<Real> &B,
float tol = 0.01) {
KALDI_ASSERT(A.ApproxEqual(B, tol));
}
/// Returns trace of matrix.
template <typename Real>
double TraceMat(const MatrixBase<Real> &A) { return A.Trace(); }
/// Returns tr(A B C)
template <typename Real>
Real TraceMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
const MatrixBase<Real> &B, MatrixTransposeType transB,
const MatrixBase<Real> &C, MatrixTransposeType transC);
/// Returns tr(A B C D)
template <typename Real>
Real TraceMatMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
const MatrixBase<Real> &B, MatrixTransposeType transB,
const MatrixBase<Real> &C, MatrixTransposeType transC,
const MatrixBase<Real> &D, MatrixTransposeType transD);
/// @} end "addtogroup matrix_funcs_scalar"
/// \addtogroup matrix_funcs_misc
/// @{
/// Function to ensure that SVD is sorted. This function is made as generic as
/// possible, to be applicable to other types of problems. s->Dim() should be
/// the same as U->NumCols(), and we sort s from greatest to least absolute
/// value (if sort_on_absolute_value == true) or greatest to least value
/// otherwise, moving the columns of U, if it exists, and the rows of Vt, if it
/// exists, around in the same way. Note: the "absolute value" part won't
matter
/// if this is an actual SVD, since singular values are non-negative.
template<typename Real> void SortSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real>* Vt = NULL,
bool sort_on_absolute_value = true);
/// Creates the eigenvalue matrix D that is part of the decomposition used
Matrix::Eig.
/// D will be block-diagonal with blocks of size 1 (for real eigenvalues) or 2x2
/// for complex pairs. If a complex pair is lambda +- i*mu, D will have a
corresponding
/// 2x2 block [lambda, mu; -mu, lambda].
/// This function will throw if any complex eigenvalues are not in complex
conjugate
/// pairs (or the members of such pairs are not consecutively numbered).
template<typename Real>
void CreateEigenvalueMatrix(const VectorBase<Real> &real, const VectorBase<Real>
&imag,
MatrixBase<Real> *D);
/// The following function is used in Matrix::Power, and separately tested, so
we
/// declare it here mainly for the testing code to see. It takes a complex
value to
/// a power using a method that will work for noninteger powers (but will fail
if the
/// complex value is real and negative).
template<typename Real>
bool AttemptComplexPower(Real *x_re, Real *x_im, Real power);
**********/
/// @} end of addtogroup matrix_funcs_misc
/// \addtogroup matrix_funcs_io
/// @{
template <typename Real>
std::ostream &operator<<(std::ostream &Out, const MatrixBase<Real> &M);
template <typename Real>
std::istream &operator>>(std::istream &In, MatrixBase<Real> &M);
// The Matrix read allows resizing, so we override the MatrixBase one.
template <typename Real>
std::istream &operator>>(std::istream &In, Matrix<Real> &M);
template <typename Real>
bool SameDim(const MatrixBase<Real> &M, const MatrixBase<Real> &N) {
return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols());
}
/// @} end of \addtogroup matrix_funcs_io
} // namespace kaldi
// we need to include the implementation and some
// template specializations.
#include "matrix/kaldi-matrix-inl.h"
#endif // KALDI_MATRIX_KALDI_MATRIX_H_