|
|
|
// matrix/kaldi-matrix.h
|
|
|
|
|
|
|
|
// Copyright 2009-2011 Ondrej Glembek; Microsoft Corporation; Lukas Burget;
|
|
|
|
// Saarland University; Petr Schwarz; Yanmin Qian;
|
|
|
|
// Karel Vesely; Go Vivace Inc.; Haihua Xu
|
|
|
|
// 2017 Shiyin Kang
|
|
|
|
// 2019 Yiwen Shao
|
|
|
|
|
|
|
|
// See ../../COPYING for clarification regarding multiple authors
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
|
|
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
|
|
|
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
|
|
|
// MERCHANTABLITY OR NON-INFRINGEMENT.
|
|
|
|
// See the Apache 2 License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#ifndef KALDI_MATRIX_KALDI_MATRIX_H_
|
|
|
|
#define KALDI_MATRIX_KALDI_MATRIX_H_ 1
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
#include "matrix/matrix-common.h"
|
|
|
|
|
|
|
|
namespace kaldi {
|
|
|
|
|
|
|
|
/// @{ \addtogroup matrix_funcs_scalar
|
|
|
|
|
|
|
|
/// \addtogroup matrix_group
|
|
|
|
/// @{
|
|
|
|
|
|
|
|
/// Base class which provides matrix operations not involving resizing
|
|
|
|
/// or allocation. Classes Matrix and SubMatrix inherit from it and take care
|
|
|
|
/// of allocation and resizing.
|
|
|
|
template <typename Real>
|
|
|
|
class MatrixBase {
|
|
|
|
public:
|
|
|
|
// so this child can access protected members of other instances.
|
|
|
|
friend class Matrix<Real>;
|
|
|
|
friend class SubMatrix<Real>;
|
|
|
|
// friend declarations for CUDA matrices (see ../cudamatrix/)
|
|
|
|
|
|
|
|
/// Returns number of rows (or zero for empty matrix).
|
|
|
|
inline MatrixIndexT NumRows() const { return num_rows_; }
|
|
|
|
|
|
|
|
/// Returns number of columns (or zero for empty matrix).
|
|
|
|
inline MatrixIndexT NumCols() const { return num_cols_; }
|
|
|
|
|
|
|
|
/// Stride (distance in memory between each row). Will be >= NumCols.
|
|
|
|
inline MatrixIndexT Stride() const { return stride_; }
|
|
|
|
|
|
|
|
/// Returns size in bytes of the data held by the matrix.
|
|
|
|
size_t SizeInBytes() const {
|
|
|
|
return static_cast<size_t>(num_rows_) * static_cast<size_t>(stride_) *
|
|
|
|
sizeof(Real);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Gives pointer to raw data (const).
|
|
|
|
inline const Real *Data() const { return data_; }
|
|
|
|
|
|
|
|
/// Gives pointer to raw data (non-const).
|
|
|
|
inline Real *Data() { return data_; }
|
|
|
|
|
|
|
|
/// Returns pointer to data for one row (non-const)
|
|
|
|
inline Real *RowData(MatrixIndexT i) {
|
|
|
|
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_));
|
|
|
|
return data_ + i * stride_;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns pointer to data for one row (const)
|
|
|
|
inline const Real *RowData(MatrixIndexT i) const {
|
|
|
|
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_));
|
|
|
|
return data_ + i * stride_;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Indexing operator, non-const
|
|
|
|
/// (only checks sizes if compiled with -DKALDI_PARANOID)
|
|
|
|
inline Real &operator()(MatrixIndexT r, MatrixIndexT c) {
|
|
|
|
KALDI_PARANOID_ASSERT(
|
|
|
|
static_cast<UnsignedMatrixIndexT>(r) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
|
|
|
|
static_cast<UnsignedMatrixIndexT>(c) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_cols_));
|
|
|
|
return *(data_ + r * stride_ + c);
|
|
|
|
}
|
|
|
|
/// Indexing operator, provided for ease of debugging (gdb doesn't work
|
|
|
|
/// with parenthesis operator).
|
|
|
|
Real &Index(MatrixIndexT r, MatrixIndexT c) { return (*this)(r, c); }
|
|
|
|
|
|
|
|
/// Indexing operator, const
|
|
|
|
/// (only checks sizes if compiled with -DKALDI_PARANOID)
|
|
|
|
inline const Real operator()(MatrixIndexT r, MatrixIndexT c) const {
|
|
|
|
KALDI_PARANOID_ASSERT(
|
|
|
|
static_cast<UnsignedMatrixIndexT>(r) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
|
|
|
|
static_cast<UnsignedMatrixIndexT>(c) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_cols_));
|
|
|
|
return *(data_ + r * stride_ + c);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Basic setting-to-special values functions. */
|
|
|
|
|
|
|
|
/// Sets matrix to zero.
|
|
|
|
void SetZero();
|
|
|
|
/// Sets all elements to a specific value.
|
|
|
|
void Set(Real);
|
|
|
|
/// Sets to zero, except ones along diagonal [for non-square matrices too]
|
|
|
|
|
|
|
|
/// Copy given matrix. (no resize is done).
|
|
|
|
template <typename OtherReal>
|
|
|
|
void CopyFromMat(const MatrixBase<OtherReal> &M,
|
|
|
|
MatrixTransposeType trans = kNoTrans);
|
|
|
|
|
|
|
|
/// Copy from compressed matrix.
|
|
|
|
// void CopyFromMat(const CompressedMatrix &M);
|
|
|
|
|
|
|
|
/// Copy given tpmatrix. (no resize is done).
|
|
|
|
// template<typename OtherReal>
|
|
|
|
// void CopyFromTp(const TpMatrix<OtherReal> &M,
|
|
|
|
// MatrixTransposeType trans = kNoTrans);
|
|
|
|
|
|
|
|
/// Copy from CUDA matrix. Implemented in ../cudamatrix/cu-matrix.h
|
|
|
|
// template<typename OtherReal>
|
|
|
|
// void CopyFromMat(const CuMatrixBase<OtherReal> &M,
|
|
|
|
// MatrixTransposeType trans = kNoTrans);
|
|
|
|
|
|
|
|
/// This function has two modes of operation. If v.Dim() == NumRows() *
|
|
|
|
/// NumCols(), then treats the vector as a row-by-row concatenation of a
|
|
|
|
/// matrix and copies to *this.
|
|
|
|
/// if v.Dim() == NumCols(), it sets each row of *this to a copy of v.
|
|
|
|
void CopyRowsFromVec(const VectorBase<Real> &v);
|
|
|
|
|
|
|
|
/// This version of CopyRowsFromVec is implemented in
|
|
|
|
/// ../cudamatrix/cu-vector.cc
|
|
|
|
// void CopyRowsFromVec(const CuVectorBase<Real> &v);
|
|
|
|
|
|
|
|
template <typename OtherReal>
|
|
|
|
void CopyRowsFromVec(const VectorBase<OtherReal> &v);
|
|
|
|
|
|
|
|
/// Copies vector into matrix, column-by-column.
|
|
|
|
/// Note that rv.Dim() must either equal NumRows()*NumCols() or NumRows();
|
|
|
|
/// this has two modes of operation.
|
|
|
|
void CopyColsFromVec(const VectorBase<Real> &v);
|
|
|
|
|
|
|
|
/// Copy vector into specific column of matrix.
|
|
|
|
void CopyColFromVec(const VectorBase<Real> &v, const MatrixIndexT col);
|
|
|
|
/// Copy vector into specific row of matrix.
|
|
|
|
void CopyRowFromVec(const VectorBase<Real> &v, const MatrixIndexT row);
|
|
|
|
/// Copy vector into diagonal of matrix.
|
|
|
|
void CopyDiagFromVec(const VectorBase<Real> &v);
|
|
|
|
|
|
|
|
/* Accessing of sub-parts of the matrix. */
|
|
|
|
|
|
|
|
/// Return specific row of matrix [const].
|
|
|
|
inline const SubVector<Real> Row(MatrixIndexT i) const {
|
|
|
|
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_));
|
|
|
|
return SubVector<Real>(data_ + (i * stride_), NumCols());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return specific row of matrix.
|
|
|
|
inline SubVector<Real> Row(MatrixIndexT i) {
|
|
|
|
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
|
|
|
|
static_cast<UnsignedMatrixIndexT>(num_rows_));
|
|
|
|
return SubVector<Real>(data_ + (i * stride_), NumCols());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return a sub-part of matrix.
|
|
|
|
inline SubMatrix<Real> Range(const MatrixIndexT row_offset,
|
|
|
|
const MatrixIndexT num_rows,
|
|
|
|
const MatrixIndexT col_offset,
|
|
|
|
const MatrixIndexT num_cols) const {
|
|
|
|
return SubMatrix<Real>(
|
|
|
|
*this, row_offset, num_rows, col_offset, num_cols);
|
|
|
|
}
|
|
|
|
inline SubMatrix<Real> RowRange(const MatrixIndexT row_offset,
|
|
|
|
const MatrixIndexT num_rows) const {
|
|
|
|
return SubMatrix<Real>(*this, row_offset, num_rows, 0, num_cols_);
|
|
|
|
}
|
|
|
|
inline SubMatrix<Real> ColRange(const MatrixIndexT col_offset,
|
|
|
|
const MatrixIndexT num_cols) const {
|
|
|
|
return SubMatrix<Real>(*this, 0, num_rows_, col_offset, num_cols);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
/// Returns sum of all elements in matrix.
|
|
|
|
Real Sum() const;
|
|
|
|
/// Returns trace of matrix.
|
|
|
|
Real Trace(bool check_square = true) const;
|
|
|
|
// If check_square = true, will crash if matrix is not square.
|
|
|
|
|
|
|
|
/// Returns maximum element of matrix.
|
|
|
|
Real Max() const;
|
|
|
|
/// Returns minimum element of matrix.
|
|
|
|
Real Min() const;
|
|
|
|
|
|
|
|
/// Element by element multiplication with a given matrix.
|
|
|
|
void MulElements(const MatrixBase<Real> &A);
|
|
|
|
|
|
|
|
/// Divide each element by the corresponding element of a given matrix.
|
|
|
|
void DivElements(const MatrixBase<Real> &A);
|
|
|
|
|
|
|
|
/// Multiply each element with a scalar value.
|
|
|
|
void Scale(Real alpha);
|
|
|
|
|
|
|
|
/// Set, element-by-element, *this = max(*this, A)
|
|
|
|
void Max(const MatrixBase<Real> &A);
|
|
|
|
/// Set, element-by-element, *this = min(*this, A)
|
|
|
|
void Min(const MatrixBase<Real> &A);
|
|
|
|
|
|
|
|
/// Equivalent to (*this) = (*this) * diag(scale). Scaling
|
|
|
|
/// each column by a scalar taken from that dimension of the vector.
|
|
|
|
void MulColsVec(const VectorBase<Real> &scale);
|
|
|
|
|
|
|
|
/// Equivalent to (*this) = diag(scale) * (*this). Scaling
|
|
|
|
/// each row by a scalar taken from that dimension of the vector.
|
|
|
|
void MulRowsVec(const VectorBase<Real> &scale);
|
|
|
|
|
|
|
|
/// Divide each row into src.NumCols() equal groups, and then scale i'th
|
|
|
|
row's
|
|
|
|
/// j'th group of elements by src(i, j). Requires src.NumRows() ==
|
|
|
|
/// this->NumRows() and this->NumCols() % src.NumCols() == 0.
|
|
|
|
void MulRowsGroupMat(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// Returns logdet of matrix.
|
|
|
|
Real LogDet(Real *det_sign = NULL) const;
|
|
|
|
|
|
|
|
/// matrix inverse.
|
|
|
|
/// if inverse_needed = false, will fill matrix with garbage.
|
|
|
|
/// (only useful if logdet wanted).
|
|
|
|
void Invert(Real *log_det = NULL, Real *det_sign = NULL,
|
|
|
|
bool inverse_needed = true);
|
|
|
|
/// matrix inverse [double].
|
|
|
|
/// if inverse_needed = false, will fill matrix with garbage
|
|
|
|
/// (only useful if logdet wanted).
|
|
|
|
/// Does inversion in double precision even if matrix was not double.
|
|
|
|
void InvertDouble(Real *LogDet = NULL, Real *det_sign = NULL,
|
|
|
|
bool inverse_needed = true);
|
|
|
|
*/
|
|
|
|
/// Inverts all the elements of the matrix
|
|
|
|
void InvertElements();
|
|
|
|
/*
|
|
|
|
/// Transpose the matrix. This one is only
|
|
|
|
/// applicable to square matrices (the one in the
|
|
|
|
/// Matrix child class works also for non-square.
|
|
|
|
void Transpose();
|
|
|
|
|
|
|
|
*/
|
|
|
|
/// Copies column r from column indices[r] of src.
|
|
|
|
/// As a special case, if indexes[i] == -1, sets column i to zero.
|
|
|
|
/// all elements of "indices" must be in [-1, src.NumCols()-1],
|
|
|
|
/// and src.NumRows() must equal this.NumRows()
|
|
|
|
void CopyCols(const MatrixBase<Real> &src, const MatrixIndexT *indices);
|
|
|
|
|
|
|
|
/// Copies row r from row indices[r] of src (does nothing
|
|
|
|
/// As a special case, if indexes[i] == -1, sets row i to zero.
|
|
|
|
/// all elements of "indices" must be in [-1, src.NumRows()-1],
|
|
|
|
/// and src.NumCols() must equal this.NumCols()
|
|
|
|
void CopyRows(const MatrixBase<Real> &src, const MatrixIndexT *indices);
|
|
|
|
|
|
|
|
/// Add column indices[r] of src to column r.
|
|
|
|
/// As a special case, if indexes[i] == -1, skip column i
|
|
|
|
/// indices.size() must equal this->NumCols(),
|
|
|
|
/// all elements of "reorder" must be in [-1, src.NumCols()-1],
|
|
|
|
/// and src.NumRows() must equal this.NumRows()
|
|
|
|
// void AddCols(const MatrixBase<Real> &src,
|
|
|
|
// const MatrixIndexT *indices);
|
|
|
|
|
|
|
|
/// Copies row r of this matrix from an array of floats at the location
|
|
|
|
/// given
|
|
|
|
/// by src[r]. If any src[r] is NULL then this.Row(r) will be set to zero.
|
|
|
|
/// Note: we are using "pointer to const pointer to const object" for "src",
|
|
|
|
/// because we may create "src" by calling Data() of const CuArray
|
|
|
|
void CopyRows(const Real *const *src);
|
|
|
|
|
|
|
|
/// Copies row r of this matrix to the array of floats at the location given
|
|
|
|
/// by dst[r]. If dst[r] is NULL, does not copy anywhere. Requires that
|
|
|
|
/// none
|
|
|
|
/// of the memory regions pointed to by the pointers in "dst" overlap (e.g.
|
|
|
|
/// none of the pointers should be the same).
|
|
|
|
void CopyToRows(Real *const *dst) const;
|
|
|
|
|
|
|
|
/// Does for each row r, this.Row(r) += alpha * src.row(indexes[r]).
|
|
|
|
/// If indexes[r] < 0, does not add anything. all elements of "indexes" must
|
|
|
|
/// be in [-1, src.NumRows()-1], and src.NumCols() must equal
|
|
|
|
/// this.NumCols().
|
|
|
|
// void AddRows(Real alpha,
|
|
|
|
// const MatrixBase<Real> &src,
|
|
|
|
// const MatrixIndexT *indexes);
|
|
|
|
|
|
|
|
/// Does for each row r, this.Row(r) += alpha * src[r], treating src[r] as
|
|
|
|
/// the
|
|
|
|
/// beginning of a region of memory representing a vector of floats, of the
|
|
|
|
/// same length as this.NumCols(). If src[r] is NULL, does not add anything.
|
|
|
|
// void AddRows(Real alpha, const Real *const *src);
|
|
|
|
|
|
|
|
/// For each row r of this matrix, adds it (times alpha) to the array of
|
|
|
|
/// floats at the location given by dst[r]. If dst[r] is NULL, does not do
|
|
|
|
/// anything for that row. Requires that none of the memory regions pointed
|
|
|
|
/// to by the pointers in "dst" overlap (e.g. none of the pointers should be
|
|
|
|
/// the same).
|
|
|
|
// void AddToRows(Real alpha, Real *const *dst) const;
|
|
|
|
|
|
|
|
/// For each row i of *this, adds this->Row(i) to
|
|
|
|
/// dst->Row(indexes(i)) if indexes(i) >= 0, else do nothing.
|
|
|
|
/// Requires that all the indexes[i] that are >= 0
|
|
|
|
/// be distinct, otherwise the behavior is undefined.
|
|
|
|
// void AddToRows(Real alpha,
|
|
|
|
// const MatrixIndexT *indexes,
|
|
|
|
// MatrixBase<Real> *dst) const;
|
|
|
|
/*
|
|
|
|
inline void ApplyPow(Real power) {
|
|
|
|
this -> Pow(*this, power);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void ApplyPowAbs(Real power, bool include_sign=false) {
|
|
|
|
this -> PowAbs(*this, power, include_sign);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyHeaviside() {
|
|
|
|
this -> Heaviside(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyFloor(Real floor_val) {
|
|
|
|
this -> Floor(*this, floor_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyCeiling(Real ceiling_val) {
|
|
|
|
this -> Ceiling(*this, ceiling_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyExp() {
|
|
|
|
this -> Exp(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyExpSpecial() {
|
|
|
|
this -> ExpSpecial(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyExpLimited(Real lower_limit, Real upper_limit) {
|
|
|
|
this -> ExpLimited(*this, lower_limit, upper_limit);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void ApplyLog() {
|
|
|
|
this -> Log(*this);
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
/// Eigenvalue Decomposition of a square NxN matrix into the form (*this) =
|
|
|
|
/// P D
|
|
|
|
/// P^{-1}. Be careful: the relationship of D to the eigenvalues we output
|
|
|
|
/// is
|
|
|
|
/// slightly complicated, due to the need for P to be real. In the
|
|
|
|
/// symmetric
|
|
|
|
/// case D is diagonal and real, but in
|
|
|
|
/// the non-symmetric case there may be complex-conjugate pairs of
|
|
|
|
/// eigenvalues.
|
|
|
|
/// In this case, for the equation (*this) = P D P^{-1} to hold, D must
|
|
|
|
/// actually
|
|
|
|
/// be block diagonal, with 2x2 blocks corresponding to any such pairs. If
|
|
|
|
/// a
|
|
|
|
/// pair is lambda +- i*mu, D will have a corresponding 2x2 block
|
|
|
|
/// [lambda, mu; -mu, lambda].
|
|
|
|
/// Note that if the input matrix (*this) is non-invertible, P may not be
|
|
|
|
/// invertible
|
|
|
|
/// so in this case instead of the equation (*this) = P D P^{-1} holding, we
|
|
|
|
/// have
|
|
|
|
/// instead (*this) P = P D.
|
|
|
|
///
|
|
|
|
/// The non-member function CreateEigenvalueMatrix creates D from eigs_real
|
|
|
|
/// and eigs_imag.
|
|
|
|
// void Eig(MatrixBase<Real> *P,
|
|
|
|
// VectorBase<Real> *eigs_real,
|
|
|
|
// VectorBase<Real> *eigs_imag) const;
|
|
|
|
|
|
|
|
/// The Power method attempts to take the matrix to a power using a method
|
|
|
|
/// that
|
|
|
|
/// works in general for fractional and negative powers. The input matrix
|
|
|
|
/// must
|
|
|
|
/// be invertible and have reasonable condition (or we don't guarantee the
|
|
|
|
/// results. The method is based on the eigenvalue decomposition. It will
|
|
|
|
/// return false and leave the matrix unchanged, if at entry the matrix had
|
|
|
|
/// real negative eigenvalues (or if it had zero eigenvalues and the power
|
|
|
|
/// was
|
|
|
|
/// negative).
|
|
|
|
// bool Power(Real pow);
|
|
|
|
|
|
|
|
/** Singular value decomposition
|
|
|
|
Major limitations:
|
|
|
|
For nonsquare matrices, we assume m>=n (NumRows >= NumCols), and we
|
|
|
|
return
|
|
|
|
the "skinny" Svd, i.e. the matrix in the middle is diagonal, and the
|
|
|
|
one on the left is rectangular.
|
|
|
|
|
|
|
|
In Svd, *this = U*diag(S)*Vt.
|
|
|
|
Null pointers for U and/or Vt at input mean we do not want that output.
|
|
|
|
We
|
|
|
|
expect that S.Dim() == m, U is either NULL or m by n,
|
|
|
|
and v is either NULL or n by n.
|
|
|
|
The singular values are not sorted (use SortSvd for that). */
|
|
|
|
// void DestructiveSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
|
|
|
|
// MatrixBase<Real> *Vt); // Destroys calling matrix.
|
|
|
|
|
|
|
|
/// Compute SVD (*this) = U diag(s) Vt. Note that the V in the call is
|
|
|
|
/// already
|
|
|
|
/// transposed; the normal formulation is U diag(s) V^T.
|
|
|
|
/// Null pointers for U or V mean we don't want that output (this saves
|
|
|
|
/// compute). The singular values are not sorted (use SortSvd for that).
|
|
|
|
// void Svd(VectorBase<Real> *s, MatrixBase<Real> *U,
|
|
|
|
// MatrixBase<Real> *Vt) const;
|
|
|
|
/// Compute SVD but only retain the singular values.
|
|
|
|
// void Svd(VectorBase<Real> *s) const { Svd(s, NULL, NULL); }
|
|
|
|
|
|
|
|
|
|
|
|
/// Returns smallest singular value.
|
|
|
|
// Real MinSingularValue() const {
|
|
|
|
// Vector<Real> tmp(std::min(NumRows(), NumCols()));
|
|
|
|
// Svd(&tmp);
|
|
|
|
// return tmp.Min();
|
|
|
|
//}
|
|
|
|
|
|
|
|
// void TestUninitialized() const; // This function is designed so that if
|
|
|
|
// any element
|
|
|
|
// if the matrix is uninitialized memory, valgrind will complain.
|
|
|
|
|
|
|
|
/// Returns condition number by computing Svd. Works even if cols > rows.
|
|
|
|
/// Returns infinity if all singular values are zero.
|
|
|
|
/*
|
|
|
|
Real Cond() const;
|
|
|
|
|
|
|
|
/// Returns true if matrix is Symmetric.
|
|
|
|
bool IsSymmetric(Real cutoff = 1.0e-05) const; // replace magic number
|
|
|
|
|
|
|
|
/// Returns true if matrix is Diagonal.
|
|
|
|
bool IsDiagonal(Real cutoff = 1.0e-05) const; // replace magic number
|
|
|
|
|
|
|
|
/// Returns true if the matrix is all zeros, except for ones on diagonal.
|
|
|
|
(it
|
|
|
|
/// does not have to be square). More specifically, this function returns
|
|
|
|
/// false if for any i, j, (*this)(i, j) differs by more than cutoff from
|
|
|
|
the
|
|
|
|
/// expression (i == j ? 1 : 0).
|
|
|
|
bool IsUnit(Real cutoff = 1.0e-05) const; // replace magic number
|
|
|
|
|
|
|
|
/// Returns true if matrix is all zeros.
|
|
|
|
bool IsZero(Real cutoff = 1.0e-05) const; // replace magic number
|
|
|
|
|
|
|
|
/// Frobenius norm, which is the sqrt of sum of square elements. Same as
|
|
|
|
Schatten 2-norm,
|
|
|
|
/// or just "2-norm".
|
|
|
|
Real FrobeniusNorm() const;
|
|
|
|
|
|
|
|
/// Returns true if ((*this)-other).FrobeniusNorm()
|
|
|
|
/// <= tol * (*this).FrobeniusNorm().
|
|
|
|
bool ApproxEqual(const MatrixBase<Real> &other, float tol = 0.01) const;
|
|
|
|
|
|
|
|
/// Tests for exact equality. It's usually preferable to use ApproxEqual.
|
|
|
|
bool Equal(const MatrixBase<Real> &other) const;
|
|
|
|
|
|
|
|
/// largest absolute value.
|
|
|
|
Real LargestAbsElem() const; // largest absolute value.
|
|
|
|
|
|
|
|
/// Returns log(sum(exp())) without exp overflow
|
|
|
|
/// If prune > 0.0, it uses a pruning beam, discarding
|
|
|
|
/// terms less than (max - prune). Note: in future
|
|
|
|
/// we may change this so that if prune = 0.0, it takes
|
|
|
|
/// the max, so use -1 if you don't want to prune.
|
|
|
|
Real LogSumExp(Real prune = -1.0) const;
|
|
|
|
|
|
|
|
/// Apply soft-max to the collection of all elements of the
|
|
|
|
/// matrix and return normalizer (log sum of exponentials).
|
|
|
|
Real ApplySoftMax();
|
|
|
|
|
|
|
|
/// Set each element to the sigmoid of the corresponding element of "src".
|
|
|
|
void Sigmoid(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// Sets each element to the Heaviside step function (x > 0 ? 1 : 0) of the
|
|
|
|
/// corresponding element in "src". Note: in general you can make different
|
|
|
|
/// choices for x = 0, but for now please leave it as it (i.e. returning
|
|
|
|
zero)
|
|
|
|
/// because it affects the RectifiedLinearComponent in the neural net code.
|
|
|
|
void Heaviside(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
void Exp(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
void Pow(const MatrixBase<Real> &src, Real power);
|
|
|
|
|
|
|
|
void Log(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// Apply power to the absolute value of each element.
|
|
|
|
/// If include_sign is true, the result will be multiplied with
|
|
|
|
/// the sign of the input value.
|
|
|
|
/// If the power is negative and the input to the power is zero,
|
|
|
|
/// The output will be set zero. If include_sign is true, it will
|
|
|
|
/// multiply the result by the sign of the input.
|
|
|
|
void PowAbs(const MatrixBase<Real> &src, Real power, bool
|
|
|
|
include_sign=false);
|
|
|
|
|
|
|
|
void Floor(const MatrixBase<Real> &src, Real floor_val);
|
|
|
|
|
|
|
|
void Ceiling(const MatrixBase<Real> &src, Real ceiling_val);
|
|
|
|
|
|
|
|
/// For each element x of the matrix, set it to
|
|
|
|
/// (x < 0 ? exp(x) : x + 1). This function is used
|
|
|
|
/// in our RNNLM training.
|
|
|
|
void ExpSpecial(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// This is equivalent to running:
|
|
|
|
/// Floor(src, lower_limit);
|
|
|
|
/// Ceiling(src, upper_limit);
|
|
|
|
/// Exp(src)
|
|
|
|
void ExpLimited(const MatrixBase<Real> &src, Real lower_limit, Real
|
|
|
|
upper_limit);
|
|
|
|
|
|
|
|
/// Set each element to y = log(1 + exp(x))
|
|
|
|
void SoftHinge(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j^(power))^(1 /
|
|
|
|
p).
|
|
|
|
/// Requires src.NumRows() == this->NumRows() and src.NumCols() %
|
|
|
|
this->NumCols() == 0.
|
|
|
|
void GroupPnorm(const MatrixBase<Real> &src, Real power);
|
|
|
|
|
|
|
|
/// Calculate derivatives for the GroupPnorm function above...
|
|
|
|
/// if "input" is the input to the GroupPnorm function above (i.e. the "src"
|
|
|
|
variable),
|
|
|
|
/// and "output" is the result of the computation (i.e. the "this" of that
|
|
|
|
function
|
|
|
|
/// call), and *this has the same dimension as "input", then it sets each
|
|
|
|
element
|
|
|
|
/// of *this to the derivative d(output-elem)/d(input-elem) for each element
|
|
|
|
of "input", where
|
|
|
|
/// "output-elem" is whichever element of output depends on that input
|
|
|
|
element.
|
|
|
|
void GroupPnormDeriv(const MatrixBase<Real> &input, const MatrixBase<Real>
|
|
|
|
&output,
|
|
|
|
Real power);
|
|
|
|
|
|
|
|
/// Apply the function y(i) = (max_{j = i*G}^{(i+1)*G-1} x_j
|
|
|
|
/// Requires src.NumRows() == this->NumRows() and src.NumCols() %
|
|
|
|
this->NumCols() == 0.
|
|
|
|
void GroupMax(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
/// Calculate derivatives for the GroupMax function above, where
|
|
|
|
/// "input" is the input to the GroupMax function above (i.e. the "src"
|
|
|
|
variable),
|
|
|
|
/// and "output" is the result of the computation (i.e. the "this" of that
|
|
|
|
function
|
|
|
|
/// call), and *this must have the same dimension as "input". Each element
|
|
|
|
/// of *this will be set to 1 if the corresponding input equals the output
|
|
|
|
of
|
|
|
|
/// the group, and 0 otherwise. The equals the function derivative where it
|
|
|
|
is
|
|
|
|
/// defined (it's not defined where multiple inputs in the group are equal
|
|
|
|
to the output).
|
|
|
|
void GroupMaxDeriv(const MatrixBase<Real> &input, const MatrixBase<Real>
|
|
|
|
&output);
|
|
|
|
|
|
|
|
/// Set each element to the tanh of the corresponding element of "src".
|
|
|
|
void Tanh(const MatrixBase<Real> &src);
|
|
|
|
|
|
|
|
// Function used in backpropagating derivatives of the sigmoid function:
|
|
|
|
// element-by-element, set *this = diff * value * (1.0 - value).
|
|
|
|
void DiffSigmoid(const MatrixBase<Real> &value,
|
|
|
|
const MatrixBase<Real> &diff);
|
|
|
|
|
|
|
|
// Function used in backpropagating derivatives of the tanh function:
|
|
|
|
// element-by-element, set *this = diff * (1.0 - value^2).
|
|
|
|
void DiffTanh(const MatrixBase<Real> &value,
|
|
|
|
const MatrixBase<Real> &diff);
|
|
|
|
*/
|
|
|
|
/** Uses Svd to compute the eigenvalue decomposition of a symmetric positive
|
|
|
|
* semi-definite matrix: (*this) = rP * diag(rS) * rP^T, with rP an
|
|
|
|
* orthogonal matrix so rP^{-1} = rP^T. Throws exception if input was not
|
|
|
|
* positive semi-definite (check_thresh controls how stringent the check is;
|
|
|
|
* set it to 2 to ensure it won't ever complain, but it will zero out
|
|
|
|
* negative
|
|
|
|
* dimensions in your matrix.
|
|
|
|
*
|
|
|
|
* Caution: if you want the eigenvalues, it may make more sense to convert
|
|
|
|
* to
|
|
|
|
* SpMatrix and use Eig() function there, which uses eigenvalue
|
|
|
|
* decomposition
|
|
|
|
* directly rather than SVD.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/// stream read.
|
|
|
|
/// Use instead of stream<<*this, if you want to add to existing contents.
|
|
|
|
// Will throw exception on failure.
|
|
|
|
void Read(std::istream &in, bool binary);
|
|
|
|
/// write to stream.
|
|
|
|
void Write(std::ostream &out, bool binary) const;
|
|
|
|
|
|
|
|
// Below is internal methods for Svd, user does not have to know about this.
|
|
|
|
protected:
|
|
|
|
/// Initializer, callable only from child.
|
|
|
|
explicit MatrixBase(Real *data,
|
|
|
|
MatrixIndexT cols,
|
|
|
|
MatrixIndexT rows,
|
|
|
|
MatrixIndexT stride)
|
|
|
|
: data_(data), num_cols_(cols), num_rows_(rows), stride_(stride) {
|
|
|
|
KALDI_ASSERT_IS_FLOATING_TYPE(Real);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Initializer, callable only from child.
|
|
|
|
/// Empty initializer, for un-initialized matrix.
|
|
|
|
explicit MatrixBase() : data_(NULL) { KALDI_ASSERT_IS_FLOATING_TYPE(Real); }
|
|
|
|
|
|
|
|
// Make sure pointers to MatrixBase cannot be deleted.
|
|
|
|
~MatrixBase() {}
|
|
|
|
|
|
|
|
/// A workaround that allows SubMatrix to get a pointer to non-const data
|
|
|
|
/// for const Matrix. Unfortunately C++ does not allow us to declare a
|
|
|
|
/// "public const" inheritance or anything like that, so it would require
|
|
|
|
/// a lot of work to make the SubMatrix class totally const-correct--
|
|
|
|
/// we would have to override many of the Matrix functions.
|
|
|
|
inline Real *Data_workaround() const { return data_; }
|
|
|
|
|
|
|
|
/// data memory area
|
|
|
|
Real *data_;
|
|
|
|
|
|
|
|
/// these attributes store the real matrix size as it is stored in memory
|
|
|
|
/// including memalignment
|
|
|
|
MatrixIndexT num_cols_; /// < Number of columns
|
|
|
|
MatrixIndexT num_rows_; /// < Number of rows
|
|
|
|
/** True number of columns for the internal matrix. This number may differ
|
|
|
|
* from num_cols_ as memory alignment might be used. */
|
|
|
|
MatrixIndexT stride_;
|
|
|
|
|
|
|
|
private:
|
|
|
|
KALDI_DISALLOW_COPY_AND_ASSIGN(MatrixBase);
|
|
|
|
};
|
|
|
|
|
|
|
|
/// A class for storing matrices.
|
|
|
|
template <typename Real>
|
|
|
|
class Matrix : public MatrixBase<Real> {
|
|
|
|
public:
|
|
|
|
/// Empty constructor.
|
|
|
|
Matrix();
|
|
|
|
|
|
|
|
/// Basic constructor.
|
|
|
|
Matrix(const MatrixIndexT r,
|
|
|
|
const MatrixIndexT c,
|
|
|
|
MatrixResizeType resize_type = kSetZero,
|
|
|
|
MatrixStrideType stride_type = kDefaultStride)
|
|
|
|
: MatrixBase<Real>() {
|
|
|
|
Resize(r, c, resize_type, stride_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Swaps the contents of *this and *other. Shallow swap.
|
|
|
|
void Swap(Matrix<Real> *other);
|
|
|
|
|
|
|
|
/// Constructor from any MatrixBase. Can also copy with transpose.
|
|
|
|
/// Allocates new memory.
|
|
|
|
explicit Matrix(const MatrixBase<Real> &M,
|
|
|
|
MatrixTransposeType trans = kNoTrans);
|
|
|
|
|
|
|
|
/// Same as above, but need to avoid default copy constructor.
|
|
|
|
Matrix(const Matrix<Real> &M); // (cannot make explicit)
|
|
|
|
|
|
|
|
/// Copy constructor: as above, but from another type.
|
|
|
|
template <typename OtherReal>
|
|
|
|
explicit Matrix(const MatrixBase<OtherReal> &M,
|
|
|
|
MatrixTransposeType trans = kNoTrans);
|
|
|
|
|
|
|
|
/// Copy constructor taking TpMatrix...
|
|
|
|
// template <typename OtherReal>
|
|
|
|
// explicit Matrix(const TpMatrix<OtherReal> & M,
|
|
|
|
// MatrixTransposeType trans = kNoTrans) : MatrixBase<Real>() {
|
|
|
|
// if (trans == kNoTrans) {
|
|
|
|
// Resize(M.NumRows(), M.NumCols(), kUndefined);
|
|
|
|
// this->CopyFromTp(M);
|
|
|
|
//} else {
|
|
|
|
// Resize(M.NumCols(), M.NumRows(), kUndefined);
|
|
|
|
// this->CopyFromTp(M, kTrans);
|
|
|
|
//}
|
|
|
|
//}
|
|
|
|
|
|
|
|
/// read from stream.
|
|
|
|
// Unlike one in base, allows resizing.
|
|
|
|
void Read(std::istream &in, bool binary);
|
|
|
|
|
|
|
|
/// Remove a specified row.
|
|
|
|
void RemoveRow(MatrixIndexT i);
|
|
|
|
|
|
|
|
/// Transpose the matrix. Works for non-square
|
|
|
|
/// matrices as well as square ones.
|
|
|
|
// void Transpose();
|
|
|
|
|
|
|
|
/// Distructor to free matrices.
|
|
|
|
~Matrix() { Destroy(); }
|
|
|
|
|
|
|
|
/// Sets matrix to a specified size (zero is OK as long as both r and c are
|
|
|
|
/// zero). The value of the new data depends on resize_type:
|
|
|
|
/// -if kSetZero, the new data will be zero
|
|
|
|
/// -if kUndefined, the new data will be undefined
|
|
|
|
/// -if kCopyData, the new data will be the same as the old data in any
|
|
|
|
/// shared positions, and zero elsewhere.
|
|
|
|
///
|
|
|
|
/// You can set stride_type to kStrideEqualNumCols to force the stride
|
|
|
|
/// to equal the number of columns; by default it is set so that the stride
|
|
|
|
/// in bytes is a multiple of 16.
|
|
|
|
///
|
|
|
|
/// This function takes time proportional to the number of data elements.
|
|
|
|
void Resize(const MatrixIndexT r,
|
|
|
|
const MatrixIndexT c,
|
|
|
|
MatrixResizeType resize_type = kSetZero,
|
|
|
|
MatrixStrideType stride_type = kDefaultStride);
|
|
|
|
|
|
|
|
/// Assignment operator that takes MatrixBase.
|
|
|
|
Matrix<Real> &operator=(const MatrixBase<Real> &other) {
|
|
|
|
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
|
|
|
|
MatrixBase<Real>::NumCols() != other.NumCols())
|
|
|
|
Resize(other.NumRows(), other.NumCols(), kUndefined);
|
|
|
|
MatrixBase<Real>::CopyFromMat(other);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Assignment operator. Needed for inclusion in std::vector.
|
|
|
|
Matrix<Real> &operator=(const Matrix<Real> &other) {
|
|
|
|
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
|
|
|
|
MatrixBase<Real>::NumCols() != other.NumCols())
|
|
|
|
Resize(other.NumRows(), other.NumCols(), kUndefined);
|
|
|
|
MatrixBase<Real>::CopyFromMat(other);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
/// Deallocates memory and sets to empty matrix (dimension 0, 0).
|
|
|
|
void Destroy();
|
|
|
|
|
|
|
|
/// Init assumes the current class contents are invalid (i.e. junk or have
|
|
|
|
/// already been freed), and it sets the matrix to newly allocated memory
|
|
|
|
/// with
|
|
|
|
/// the specified number of rows and columns. r == c == 0 is acceptable.
|
|
|
|
/// The data
|
|
|
|
/// memory contents will be undefined.
|
|
|
|
void Init(const MatrixIndexT r,
|
|
|
|
const MatrixIndexT c,
|
|
|
|
const MatrixStrideType stride_type);
|
|
|
|
};
|
|
|
|
/// @} end "addtogroup matrix_group"
|
|
|
|
|
|
|
|
/// \addtogroup matrix_funcs_io
|
|
|
|
/// @{
|
|
|
|
|
|
|
|
/// A structure containing the HTK header.
|
|
|
|
/// [TODO: change the style of the variables to Kaldi-compliant]
|
|
|
|
|
|
|
|
template <typename Real>
|
|
|
|
class SubMatrix : public MatrixBase<Real> {
|
|
|
|
public:
|
|
|
|
// Initialize a SubMatrix from part of a matrix; this is
|
|
|
|
// a bit like A(b:c, d:e) in Matlab.
|
|
|
|
// This initializer is against the proper semantics of "const", since
|
|
|
|
// SubMatrix can change its contents. It would be hard to implement
|
|
|
|
// a "const-safe" version of this class.
|
|
|
|
SubMatrix(const MatrixBase<Real> &T,
|
|
|
|
const MatrixIndexT ro, // row offset, 0 < ro < NumRows()
|
|
|
|
const MatrixIndexT r, // number of rows, r > 0
|
|
|
|
const MatrixIndexT co, // column offset, 0 < co < NumCols()
|
|
|
|
const MatrixIndexT c); // number of columns, c > 0
|
|
|
|
|
|
|
|
// This initializer is mostly intended for use in CuMatrix and related
|
|
|
|
// classes. Be careful!
|
|
|
|
SubMatrix(Real *data,
|
|
|
|
MatrixIndexT num_rows,
|
|
|
|
MatrixIndexT num_cols,
|
|
|
|
MatrixIndexT stride);
|
|
|
|
|
|
|
|
~SubMatrix<Real>() {}
|
|
|
|
|
|
|
|
/// This type of constructor is needed for Range() to work [in Matrix base
|
|
|
|
/// class]. Cannot make it explicit.
|
|
|
|
SubMatrix<Real>(const SubMatrix &other)
|
|
|
|
: MatrixBase<Real>(
|
|
|
|
other.data_, other.num_cols_, other.num_rows_, other.stride_) {}
|
|
|
|
|
|
|
|
private:
|
|
|
|
/// Disallow assignment.
|
|
|
|
SubMatrix<Real> &operator=(const SubMatrix<Real> &other);
|
|
|
|
};
|
|
|
|
|
|
|
|
/// @} End of "addtogroup matrix_funcs_io".
|
|
|
|
|
|
|
|
/// \addtogroup matrix_funcs_scalar
|
|
|
|
/// @{
|
|
|
|
|
|
|
|
// Some declarations. These are traces of products.
|
|
|
|
|
|
|
|
/************************
|
|
|
|
template<typename Real>
|
|
|
|
bool ApproxEqual(const MatrixBase<Real> &A,
|
|
|
|
const MatrixBase<Real> &B, Real tol = 0.01) {
|
|
|
|
return A.ApproxEqual(B, tol);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Real>
|
|
|
|
inline void AssertEqual(const MatrixBase<Real> &A, const MatrixBase<Real> &B,
|
|
|
|
float tol = 0.01) {
|
|
|
|
KALDI_ASSERT(A.ApproxEqual(B, tol));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns trace of matrix.
|
|
|
|
template <typename Real>
|
|
|
|
double TraceMat(const MatrixBase<Real> &A) { return A.Trace(); }
|
|
|
|
|
|
|
|
|
|
|
|
/// Returns tr(A B C)
|
|
|
|
template <typename Real>
|
|
|
|
Real TraceMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
|
|
|
|
const MatrixBase<Real> &B, MatrixTransposeType transB,
|
|
|
|
const MatrixBase<Real> &C, MatrixTransposeType transC);
|
|
|
|
|
|
|
|
/// Returns tr(A B C D)
|
|
|
|
template <typename Real>
|
|
|
|
Real TraceMatMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
|
|
|
|
const MatrixBase<Real> &B, MatrixTransposeType transB,
|
|
|
|
const MatrixBase<Real> &C, MatrixTransposeType transC,
|
|
|
|
const MatrixBase<Real> &D, MatrixTransposeType transD);
|
|
|
|
|
|
|
|
/// @} end "addtogroup matrix_funcs_scalar"
|
|
|
|
|
|
|
|
|
|
|
|
/// \addtogroup matrix_funcs_misc
|
|
|
|
/// @{
|
|
|
|
|
|
|
|
|
|
|
|
/// Function to ensure that SVD is sorted. This function is made as generic as
|
|
|
|
/// possible, to be applicable to other types of problems. s->Dim() should be
|
|
|
|
/// the same as U->NumCols(), and we sort s from greatest to least absolute
|
|
|
|
/// value (if sort_on_absolute_value == true) or greatest to least value
|
|
|
|
/// otherwise, moving the columns of U, if it exists, and the rows of Vt, if it
|
|
|
|
/// exists, around in the same way. Note: the "absolute value" part won't
|
|
|
|
matter
|
|
|
|
/// if this is an actual SVD, since singular values are non-negative.
|
|
|
|
template<typename Real> void SortSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
|
|
|
|
MatrixBase<Real>* Vt = NULL,
|
|
|
|
bool sort_on_absolute_value = true);
|
|
|
|
|
|
|
|
/// Creates the eigenvalue matrix D that is part of the decomposition used
|
|
|
|
Matrix::Eig.
|
|
|
|
/// D will be block-diagonal with blocks of size 1 (for real eigenvalues) or 2x2
|
|
|
|
/// for complex pairs. If a complex pair is lambda +- i*mu, D will have a
|
|
|
|
corresponding
|
|
|
|
/// 2x2 block [lambda, mu; -mu, lambda].
|
|
|
|
/// This function will throw if any complex eigenvalues are not in complex
|
|
|
|
conjugate
|
|
|
|
/// pairs (or the members of such pairs are not consecutively numbered).
|
|
|
|
template<typename Real>
|
|
|
|
void CreateEigenvalueMatrix(const VectorBase<Real> &real, const VectorBase<Real>
|
|
|
|
&imag,
|
|
|
|
MatrixBase<Real> *D);
|
|
|
|
|
|
|
|
/// The following function is used in Matrix::Power, and separately tested, so
|
|
|
|
we
|
|
|
|
/// declare it here mainly for the testing code to see. It takes a complex
|
|
|
|
value to
|
|
|
|
/// a power using a method that will work for noninteger powers (but will fail
|
|
|
|
if the
|
|
|
|
/// complex value is real and negative).
|
|
|
|
template<typename Real>
|
|
|
|
bool AttemptComplexPower(Real *x_re, Real *x_im, Real power);
|
|
|
|
|
|
|
|
**********/
|
|
|
|
|
|
|
|
/// @} end of addtogroup matrix_funcs_misc
|
|
|
|
|
|
|
|
/// \addtogroup matrix_funcs_io
|
|
|
|
/// @{
|
|
|
|
template <typename Real>
|
|
|
|
std::ostream &operator<<(std::ostream &Out, const MatrixBase<Real> &M);
|
|
|
|
|
|
|
|
template <typename Real>
|
|
|
|
std::istream &operator>>(std::istream &In, MatrixBase<Real> &M);
|
|
|
|
|
|
|
|
// The Matrix read allows resizing, so we override the MatrixBase one.
|
|
|
|
template <typename Real>
|
|
|
|
std::istream &operator>>(std::istream &In, Matrix<Real> &M);
|
|
|
|
|
|
|
|
template <typename Real>
|
|
|
|
bool SameDim(const MatrixBase<Real> &M, const MatrixBase<Real> &N) {
|
|
|
|
return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// @} end of \addtogroup matrix_funcs_io
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace kaldi
|
|
|
|
|
|
|
|
|
|
|
|
// we need to include the implementation and some
|
|
|
|
// template specializations.
|
|
|
|
#include "matrix/kaldi-matrix-inl.h"
|
|
|
|
|
|
|
|
|
|
|
|
#endif // KALDI_MATRIX_KALDI_MATRIX_H_
|