You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/common/frontend/db_norm.cc

97 lines
2.7 KiB

3 years ago
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/audio/db_norm.h"
2 years ago
3 years ago
#include "kaldi/feat/cmvn.h"
#include "kaldi/util/kaldi-io.h"
namespace ppspeech {
using kaldi::BaseFloat;
using kaldi::SubVector;
2 years ago
using kaldi::Vector;
using kaldi::VectorBase;
3 years ago
using std::unique_ptr;
2 years ago
using std::vector;
3 years ago
DecibelNormalizer::DecibelNormalizer(
const DecibelNormalizerOptions& opts,
std::unique_ptr<FrontendInterface> base_extractor) {
base_extractor_ = std::move(base_extractor);
opts_ = opts;
dim_ = 1;
}
void DecibelNormalizer::Accept(const kaldi::VectorBase<BaseFloat>& waves) {
base_extractor_->Accept(waves);
}
bool DecibelNormalizer::Read(kaldi::Vector<BaseFloat>* waves) {
if (base_extractor_->Read(waves) == false || waves->Dim() == 0) {
return false;
}
Compute(waves);
return true;
}
bool DecibelNormalizer::Compute(VectorBase<BaseFloat>* waves) const {
// calculate db rms
BaseFloat rms_db = 0.0;
BaseFloat mean_square = 0.0;
BaseFloat gain = 0.0;
BaseFloat wave_float_normlization = 1.0f / (std::pow(2, 16 - 1));
vector<BaseFloat> samples;
samples.resize(waves->Dim());
for (size_t i = 0; i < samples.size(); ++i) {
samples[i] = (*waves)(i);
}
// square
for (auto& d : samples) {
if (opts_.convert_int_float) {
d = d * wave_float_normlization;
}
mean_square += d * d;
}
// mean
mean_square /= samples.size();
rms_db = 10 * std::log10(mean_square);
gain = opts_.target_db - rms_db;
if (gain > opts_.max_gain_db) {
LOG(ERROR)
<< "Unable to normalize segment to " << opts_.target_db << "dB,"
<< "because the probable gain has exceeded opts_.max_gain_db"
3 years ago
<< opts_.max_gain_db << "dB.";
return false;
}
// Note that this is an in-place transformation.
for (auto& item : samples) {
// python item *= 10.0 ** (gain / 20.0)
item *= std::pow(10.0, gain / 20.0);
}
std::memcpy(
waves->Data(), samples.data(), sizeof(BaseFloat) * samples.size());
return true;
}
} // namespace ppspeech