You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
7.1 KiB
214 lines
7.1 KiB
2 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import argparse
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import soundfile as sf
|
||
|
import yaml
|
||
|
from yacs.config import CfgNode
|
||
|
|
||
|
from paddlespeech.t2s.datasets.get_feats import LinearSpectrogram
|
||
|
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
||
|
from paddlespeech.t2s.models.vits import VITS
|
||
|
from paddlespeech.t2s.utils import str2bool
|
||
|
from paddlespeech.vector.exps.ge2e.audio_processor import SpeakerVerificationPreprocessor
|
||
|
from paddlespeech.vector.models.lstm_speaker_encoder import LSTMSpeakerEncoder
|
||
|
|
||
|
|
||
|
def voice_cloning(args):
|
||
|
|
||
|
# Init body.
|
||
|
with open(args.config) as f:
|
||
|
config = CfgNode(yaml.safe_load(f))
|
||
|
|
||
|
print("========Args========")
|
||
|
print(yaml.safe_dump(vars(args)))
|
||
|
print("========Config========")
|
||
|
print(config)
|
||
|
|
||
|
# speaker encoder
|
||
|
spec_extractor = LinearSpectrogram(
|
||
|
n_fft=config.n_fft,
|
||
|
hop_length=config.n_shift,
|
||
|
win_length=config.win_length,
|
||
|
window=config.window)
|
||
|
p = SpeakerVerificationPreprocessor(
|
||
|
sampling_rate=16000,
|
||
|
audio_norm_target_dBFS=-30,
|
||
|
vad_window_length=30,
|
||
|
vad_moving_average_width=8,
|
||
|
vad_max_silence_length=6,
|
||
|
mel_window_length=25,
|
||
|
mel_window_step=10,
|
||
|
n_mels=40,
|
||
|
partial_n_frames=160,
|
||
|
min_pad_coverage=0.75,
|
||
|
partial_overlap_ratio=0.5)
|
||
|
print("Audio Processor Done!")
|
||
|
|
||
|
speaker_encoder = LSTMSpeakerEncoder(
|
||
|
n_mels=40, num_layers=3, hidden_size=256, output_size=256)
|
||
|
speaker_encoder.set_state_dict(paddle.load(args.ge2e_params_path))
|
||
|
speaker_encoder.eval()
|
||
|
print("GE2E Done!")
|
||
|
|
||
|
frontend = get_frontend(lang=args.lang, phones_dict=args.phones_dict)
|
||
|
print("frontend done!")
|
||
|
|
||
|
with open(args.phones_dict, "r") as f:
|
||
|
phn_id = [line.strip().split() for line in f.readlines()]
|
||
|
vocab_size = len(phn_id)
|
||
|
print("vocab_size:", vocab_size)
|
||
|
|
||
|
odim = config.n_fft // 2 + 1
|
||
|
|
||
|
vits = VITS(idim=vocab_size, odim=odim, **config["model"])
|
||
|
vits.set_state_dict(paddle.load(args.ckpt)["main_params"])
|
||
|
vits.eval()
|
||
|
|
||
|
output_dir = Path(args.output_dir)
|
||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
input_dir = Path(args.input_dir)
|
||
|
|
||
|
if args.audio_path == "":
|
||
|
args.audio_path = None
|
||
|
if args.audio_path is None:
|
||
|
sentence = args.text
|
||
|
merge_sentences = True
|
||
|
add_blank = args.add_blank
|
||
|
|
||
|
if args.lang == 'zh':
|
||
|
input_ids = frontend.get_input_ids(
|
||
|
sentence, merge_sentences=merge_sentences, add_blank=add_blank)
|
||
|
elif args.lang == 'en':
|
||
|
input_ids = frontend.get_input_ids(
|
||
|
sentence, merge_sentences=merge_sentences)
|
||
|
phone_ids = input_ids["phone_ids"][0]
|
||
|
else:
|
||
|
wav, _ = librosa.load(str(args.audio_path), sr=config.fs)
|
||
|
feats = paddle.to_tensor(spec_extractor.get_linear_spectrogram(wav))
|
||
|
|
||
|
mel_sequences = p.extract_mel_partials(
|
||
|
p.preprocess_wav(args.audio_path))
|
||
|
with paddle.no_grad():
|
||
|
spk_emb_src = speaker_encoder.embed_utterance(
|
||
|
paddle.to_tensor(mel_sequences))
|
||
|
|
||
|
for name in os.listdir(input_dir):
|
||
|
utt_id = name.split(".")[0]
|
||
|
ref_audio_path = input_dir / name
|
||
|
mel_sequences = p.extract_mel_partials(p.preprocess_wav(ref_audio_path))
|
||
|
# print("mel_sequences: ", mel_sequences.shape)
|
||
|
with paddle.no_grad():
|
||
|
spk_emb = speaker_encoder.embed_utterance(
|
||
|
paddle.to_tensor(mel_sequences))
|
||
|
# print("spk_emb shape: ", spk_emb.shape)
|
||
|
|
||
|
with paddle.no_grad():
|
||
|
if args.audio_path is None:
|
||
|
out = vits.inference(text=phone_ids, spembs=spk_emb)
|
||
|
else:
|
||
|
out = vits.voice_conversion(
|
||
|
feats=feats, spembs_src=spk_emb_src, spembs_tgt=spk_emb)
|
||
|
wav = out["wav"]
|
||
|
|
||
|
sf.write(
|
||
|
str(output_dir / (utt_id + ".wav")),
|
||
|
wav.numpy(),
|
||
|
samplerate=config.fs)
|
||
|
print(f"{utt_id} done!")
|
||
|
# Randomly generate numbers of 0 ~ 0.2, 256 is the dim of spk_emb
|
||
|
random_spk_emb = np.random.rand(256) * 0.2
|
||
|
random_spk_emb = paddle.to_tensor(random_spk_emb, dtype='float32')
|
||
|
utt_id = "random_spk_emb"
|
||
|
with paddle.no_grad():
|
||
|
if args.audio_path is None:
|
||
|
out = vits.inference(text=phone_ids, spembs=random_spk_emb)
|
||
|
else:
|
||
|
out = vits.voice_conversion(
|
||
|
feats=feats, spembs_src=spk_emb_src, spembs_tgt=random_spk_emb)
|
||
|
wav = out["wav"]
|
||
|
sf.write(
|
||
|
str(output_dir / (utt_id + ".wav")), wav.numpy(), samplerate=config.fs)
|
||
|
print(f"{utt_id} done!")
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
# parse args and config
|
||
|
parser = argparse.ArgumentParser(description="")
|
||
|
parser.add_argument(
|
||
|
'--config', type=str, default=None, help='Config of VITS.')
|
||
|
parser.add_argument(
|
||
|
'--ckpt', type=str, default=None, help='Checkpoint file of VITS.')
|
||
|
parser.add_argument(
|
||
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
||
|
parser.add_argument(
|
||
|
"--text",
|
||
|
type=str,
|
||
|
default="每当你觉得,想要批评什么人的时候,你切要记着,这个世界上的人,并非都具备你禀有的条件。",
|
||
|
help="text to synthesize, a line")
|
||
|
parser.add_argument(
|
||
|
'--lang',
|
||
|
type=str,
|
||
|
default='zh',
|
||
|
help='Choose model language. zh or en')
|
||
|
parser.add_argument(
|
||
|
"--audio-path",
|
||
|
type=str,
|
||
|
default=None,
|
||
|
help="audio as content to synthesize")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--ge2e_params_path", type=str, help="ge2e params path.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--input-dir",
|
||
|
type=str,
|
||
|
help="input dir of *.wav, the sample rate will be resample to 16k.")
|
||
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--add-blank",
|
||
|
type=str2bool,
|
||
|
default=True,
|
||
|
help="whether to add blank between phones")
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
|
||
|
if args.ngpu == 0:
|
||
|
paddle.set_device("cpu")
|
||
|
elif args.ngpu > 0:
|
||
|
paddle.set_device("gpu")
|
||
|
else:
|
||
|
print("ngpu should >= 0 !")
|
||
|
|
||
|
voice_cloning(args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|