You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/parakeet/models/melgan/multi_band_melgan_updater.py

246 lines
9.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddle.optimizer.lr import LRScheduler
from parakeet.training.extensions.evaluator import StandardEvaluator
from parakeet.training.reporter import report
from parakeet.training.updaters.standard_updater import StandardUpdater
from parakeet.training.updaters.standard_updater import UpdaterState
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class MBMelGANUpdater(StandardUpdater):
def __init__(self,
models: Dict[str, Layer],
optimizers: Dict[str, Optimizer],
criterions: Dict[str, Layer],
schedulers: Dict[str, LRScheduler],
dataloader: DataLoader,
discriminator_train_start_steps: int,
lambda_adv: float,
output_dir=None):
self.models = models
self.generator: Layer = models['generator']
self.discriminator: Layer = models['discriminator']
self.optimizers = optimizers
self.optimizer_g: Optimizer = optimizers['generator']
self.optimizer_d: Optimizer = optimizers['discriminator']
self.criterions = criterions
self.criterion_stft = criterions['stft']
self.criterion_sub_stft = criterions['sub_stft']
self.criterion_pqmf = criterions['pqmf']
self.criterion_gen_adv = criterions["gen_adv"]
self.criterion_dis_adv = criterions["dis_adv"]
self.schedulers = schedulers
self.scheduler_g = schedulers['generator']
self.scheduler_d = schedulers['discriminator']
self.dataloader = dataloader
self.discriminator_train_start_steps = discriminator_train_start_steps
self.lambda_adv = lambda_adv
self.state = UpdaterState(iteration=0, epoch=0)
self.train_iterator = iter(self.dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
# parse batch
wav, mel = batch
# Generator
# (B, out_channels, T ** prod(upsample_scales)
wav_ = self.generator(mel)
wav_mb_ = wav_
# (B, 1, out_channels*T ** prod(upsample_scales)
wav_ = self.criterion_pqmf.synthesis(wav_mb_)
# initialize
gen_loss = 0.0
# full band Multi-resolution stft loss
sc_loss, mag_loss = self.criterion_stft(wav_, wav)
# for balancing with subband stft loss
# Eq.(9) in paper
gen_loss += 0.5 * (sc_loss + mag_loss)
report("train/spectral_convergence_loss", float(sc_loss))
report("train/log_stft_magnitude_loss", float(mag_loss))
losses_dict["spectral_convergence_loss"] = float(sc_loss)
losses_dict["log_stft_magnitude_loss"] = float(mag_loss)
# sub band Multi-resolution stft loss
# (B, subbands, T // subbands)
wav_mb = self.criterion_pqmf.analysis(wav)
sub_sc_loss, sub_mag_loss = self.criterion_sub_stft(wav_mb_, wav_mb)
# Eq.(9) in paper
gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
report("train/sub_spectral_convergence_loss", float(sub_sc_loss))
report("train/sub_log_stft_magnitude_loss", float(sub_mag_loss))
losses_dict["sub_spectral_convergence_loss"] = float(sub_sc_loss)
losses_dict["sub_log_stft_magnitude_loss"] = float(sub_mag_loss)
## Adversarial loss
if self.state.iteration > self.discriminator_train_start_steps:
p_ = self.discriminator(wav_)
adv_loss = self.criterion_gen_adv(p_)
report("train/adversarial_loss", float(adv_loss))
losses_dict["adversarial_loss"] = float(adv_loss)
gen_loss += self.lambda_adv * adv_loss
report("train/generator_loss", float(gen_loss))
losses_dict["generator_loss"] = float(gen_loss)
self.optimizer_g.clear_grad()
gen_loss.backward()
self.optimizer_g.step()
self.scheduler_g.step()
# Disctiminator
if self.state.iteration > self.discriminator_train_start_steps:
# re-compute wav_ which leads better quality
with paddle.no_grad():
wav_ = self.generator(mel)
wav_ = self.criterion_pqmf.synthesis(wav_)
p = self.discriminator(wav)
p_ = self.discriminator(wav_.detach())
real_loss, fake_loss = self.criterion_dis_adv(p_, p)
dis_loss = real_loss + fake_loss
report("train/real_loss", float(real_loss))
report("train/fake_loss", float(fake_loss))
report("train/discriminator_loss", float(dis_loss))
losses_dict["real_loss"] = float(real_loss)
losses_dict["fake_loss"] = float(fake_loss)
losses_dict["discriminator_loss"] = float(dis_loss)
self.optimizer_d.clear_grad()
dis_loss.backward()
self.optimizer_d.step()
self.scheduler_d.step()
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class MBMelGANEvaluator(StandardEvaluator):
def __init__(self,
models,
criterions,
dataloader,
lambda_adv,
output_dir=None):
self.models = models
self.generator = models['generator']
self.discriminator = models['discriminator']
self.criterions = criterions
self.criterion_stft = criterions['stft']
self.criterion_sub_stft = criterions['sub_stft']
self.criterion_pqmf = criterions['pqmf']
self.criterion_gen_adv = criterions["gen_adv"]
self.criterion_dis_adv = criterions["dis_adv"]
self.dataloader = dataloader
self.lambda_adv = lambda_adv
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def evaluate_core(self, batch):
# logging.debug("Evaluate: ")
self.msg = "Evaluate: "
losses_dict = {}
wav, mel = batch
# Generator
# (B, out_channels, T ** prod(upsample_scales)
wav_ = self.generator(mel)
wav_mb_ = wav_
# (B, 1, out_channels*T ** prod(upsample_scales)
wav_ = self.criterion_pqmf.synthesis(wav_mb_)
## Adversarial loss
p_ = self.discriminator(wav_)
adv_loss = self.criterion_gen_adv(p_)
report("eval/adversarial_loss", float(adv_loss))
losses_dict["adversarial_loss"] = float(adv_loss)
gen_loss = self.lambda_adv * adv_loss
# Multi-resolution stft loss
sc_loss, mag_loss = self.criterion_stft(wav_, wav)
# Eq.(9) in paper
gen_loss += 0.5 * (sc_loss + mag_loss)
report("eval/spectral_convergence_loss", float(sc_loss))
report("eval/log_stft_magnitude_loss", float(mag_loss))
losses_dict["spectral_convergence_loss"] = float(sc_loss)
losses_dict["log_stft_magnitude_loss"] = float(mag_loss)
# sub band Multi-resolution stft loss
# (B, subbands, T // subbands)
wav_mb = self.criterion_pqmf.analysis(wav)
sub_sc_loss, sub_mag_loss = self.criterion_sub_stft(wav_mb_, wav_mb)
# Eq.(9) in paper
gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
report("eval/sub_spectral_convergence_loss", float(sub_sc_loss))
report("eval/sub_log_stft_magnitude_loss", float(sub_mag_loss))
losses_dict["sub_spectral_convergence_loss"] = float(sub_sc_loss)
losses_dict["sub_log_stft_magnitude_loss"] = float(sub_mag_loss)
report("eval/generator_loss", float(gen_loss))
losses_dict["generator_loss"] = float(gen_loss)
# Disctiminator
p = self.discriminator(wav)
real_loss, fake_loss = self.criterion_dis_adv(p_, p)
dis_loss = real_loss + fake_loss
report("eval/real_loss", float(real_loss))
report("eval/fake_loss", float(fake_loss))
report("eval/discriminator_loss", float(dis_loss))
losses_dict["real_loss"] = float(real_loss)
losses_dict["fake_loss"] = float(fake_loss)
losses_dict["discriminator_loss"] = float(dis_loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)