You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.3 KiB
120 lines
4.3 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""This module provides functions to calculate bleu score in different level.
|
||
|
e.g. wer for word-level, cer for char-level.
|
||
|
"""
|
||
3 years ago
|
import nltk
|
||
|
import numpy as np
|
||
3 years ago
|
import sacrebleu
|
||
3 years ago
|
|
||
3 years ago
|
__all__ = ['bleu', 'char_bleu', "ErrorCalculator"]
|
||
3 years ago
|
|
||
|
|
||
|
def bleu(hypothesis, reference):
|
||
|
"""Calculate BLEU. BLEU compares reference text and
|
||
|
hypothesis text in word-level using scarebleu.
|
||
|
|
||
|
:param reference: The reference sentences.
|
||
|
:type reference: list[list[str]]
|
||
|
:param hypothesis: The hypothesis sentence.
|
||
|
:type hypothesis: list[str]
|
||
|
:raises ValueError: If the reference length is zero.
|
||
|
"""
|
||
|
|
||
|
return sacrebleu.corpus_bleu(hypothesis, reference)
|
||
|
|
||
3 years ago
|
|
||
3 years ago
|
def char_bleu(hypothesis, reference):
|
||
|
"""Calculate BLEU. BLEU compares reference text and
|
||
|
hypothesis text in char-level using scarebleu.
|
||
|
|
||
|
:param reference: The reference sentences.
|
||
|
:type reference: list[list[str]]
|
||
|
:param hypothesis: The hypothesis sentence.
|
||
|
:type hypothesis: list[str]
|
||
|
:raises ValueError: If the reference number is zero.
|
||
|
"""
|
||
3 years ago
|
hypothesis = [' '.join(list(hyp.replace(' ', ''))) for hyp in hypothesis]
|
||
|
reference = [[' '.join(list(ref_i.replace(' ', ''))) for ref_i in ref]
|
||
|
for ref in reference]
|
||
3 years ago
|
|
||
3 years ago
|
return sacrebleu.corpus_bleu(hypothesis, reference)
|
||
3 years ago
|
|
||
|
|
||
|
class ErrorCalculator():
|
||
|
"""Calculate BLEU for ST and MT models during training.
|
||
|
|
||
|
:param y_hats: numpy array with predicted text
|
||
|
:param y_pads: numpy array with true (target) text
|
||
|
:param char_list: vocabulary list
|
||
|
:param sym_space: space symbol
|
||
|
:param sym_pad: pad symbol
|
||
|
:param report_bleu: report BLUE score if True
|
||
|
"""
|
||
|
|
||
|
def __init__(self, char_list, sym_space, sym_pad, report_bleu=False):
|
||
|
"""Construct an ErrorCalculator object."""
|
||
|
super().__init__()
|
||
|
self.char_list = char_list
|
||
|
self.space = sym_space
|
||
|
self.pad = sym_pad
|
||
|
self.report_bleu = report_bleu
|
||
|
if self.space in self.char_list:
|
||
|
self.idx_space = self.char_list.index(self.space)
|
||
|
else:
|
||
|
self.idx_space = None
|
||
|
|
||
|
def __call__(self, ys_hat, ys_pad):
|
||
|
"""Calculate corpus-level BLEU score.
|
||
|
|
||
|
:param torch.Tensor ys_hat: prediction (batch, seqlen)
|
||
|
:param torch.Tensor ys_pad: reference (batch, seqlen)
|
||
|
:return: corpus-level BLEU score in a mini-batch
|
||
|
:rtype float
|
||
|
"""
|
||
|
bleu = None
|
||
|
if not self.report_bleu:
|
||
|
return bleu
|
||
|
|
||
|
bleu = self.calculate_corpus_bleu(ys_hat, ys_pad)
|
||
|
return bleu
|
||
|
|
||
|
def calculate_corpus_bleu(self, ys_hat, ys_pad):
|
||
|
"""Calculate corpus-level BLEU score in a mini-batch.
|
||
|
|
||
|
:param torch.Tensor seqs_hat: prediction (batch, seqlen)
|
||
|
:param torch.Tensor seqs_true: reference (batch, seqlen)
|
||
|
:return: corpus-level BLEU score
|
||
|
:rtype float
|
||
|
"""
|
||
|
seqs_hat, seqs_true = [], []
|
||
|
for i, y_hat in enumerate(ys_hat):
|
||
|
y_true = ys_pad[i]
|
||
|
eos_true = np.where(y_true == -1)[0]
|
||
|
ymax = eos_true[0] if len(eos_true) > 0 else len(y_true)
|
||
|
# NOTE: padding index (-1) in y_true is used to pad y_hat
|
||
|
# because y_hats is not padded with -1
|
||
|
seq_hat = [self.char_list[int(idx)] for idx in y_hat[:ymax]]
|
||
3 years ago
|
seq_true = [
|
||
|
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
|
||
|
]
|
||
3 years ago
|
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
|
||
|
seq_hat_text = seq_hat_text.replace(self.pad, "")
|
||
|
seq_true_text = "".join(seq_true).replace(self.space, " ")
|
||
|
seqs_hat.append(seq_hat_text)
|
||
|
seqs_true.append(seq_true_text)
|
||
3 years ago
|
bleu = nltk.bleu_score.corpus_bleu([[ref] for ref in seqs_true],
|
||
|
seqs_hat)
|
||
3 years ago
|
return bleu * 100
|