|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
|
"""StyleMelGAN Modules."""
|
|
|
|
|
import copy
|
|
|
|
|
import math
|
|
|
|
|
from typing import Any
|
|
|
|
|
from typing import Dict
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
|
|
from paddlespeech.t2s.models.melgan import MelGANDiscriminator as BaseDiscriminator
|
|
|
|
|
from paddlespeech.t2s.modules.activation import get_activation
|
|
|
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
|
|
|
from paddlespeech.t2s.modules.pqmf import PQMF
|
|
|
|
|
from paddlespeech.t2s.modules.tade_res_block import TADEResBlock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StyleMelGANGenerator(nn.Layer):
|
|
|
|
|
"""Style MelGAN generator module."""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
in_channels: int=128,
|
|
|
|
|
aux_channels: int=80,
|
|
|
|
|
channels: int=64,
|
|
|
|
|
out_channels: int=1,
|
|
|
|
|
kernel_size: int=9,
|
|
|
|
|
dilation: int=2,
|
|
|
|
|
bias: bool=True,
|
|
|
|
|
noise_upsample_scales: List[int]=[11, 2, 2, 2],
|
|
|
|
|
noise_upsample_activation: str="leakyrelu",
|
|
|
|
|
noise_upsample_activation_params: Dict[str,
|
|
|
|
|
Any]={"negative_slope": 0.2},
|
|
|
|
|
upsample_scales: List[int]=[2, 2, 2, 2, 2, 2, 2, 2, 1],
|
|
|
|
|
upsample_mode: str="linear",
|
|
|
|
|
gated_function: str="softmax",
|
|
|
|
|
use_weight_norm: bool=True,
|
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
|
"""Initilize Style MelGAN generator.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
in_channels : int
|
|
|
|
|
Number of input noise channels.
|
|
|
|
|
aux_channels : int
|
|
|
|
|
Number of auxiliary input channels.
|
|
|
|
|
channels : int
|
|
|
|
|
Number of channels for conv layer.
|
|
|
|
|
out_channels : int
|
|
|
|
|
Number of output channels.
|
|
|
|
|
kernel_size : int
|
|
|
|
|
Kernel size of conv layers.
|
|
|
|
|
dilation : int
|
|
|
|
|
Dilation factor for conv layers.
|
|
|
|
|
bias : bool
|
|
|
|
|
Whether to add bias parameter in convolution layers.
|
|
|
|
|
noise_upsample_scales : list
|
|
|
|
|
List of noise upsampling scales.
|
|
|
|
|
noise_upsample_activation : str
|
|
|
|
|
Activation function module name for noise upsampling.
|
|
|
|
|
noise_upsample_activation_params : dict
|
|
|
|
|
Hyperparameters for the above activation function.
|
|
|
|
|
upsample_scales : list
|
|
|
|
|
List of upsampling scales.
|
|
|
|
|
upsample_mode : str
|
|
|
|
|
Upsampling mode in TADE layer.
|
|
|
|
|
gated_function : str
|
|
|
|
|
Gated function in TADEResBlock ("softmax" or "sigmoid").
|
|
|
|
|
use_weight_norm : bool
|
|
|
|
|
Whether to use weight norm.
|
|
|
|
|
If set to true, it will be applied to all of the conv layers.
|
|
|
|
|
"""
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
|
|
self.in_channels = in_channels
|
|
|
|
|
noise_upsample = []
|
|
|
|
|
in_chs = in_channels
|
|
|
|
|
for noise_upsample_scale in noise_upsample_scales:
|
|
|
|
|
noise_upsample.append(
|
|
|
|
|
nn.Conv1DTranspose(
|
|
|
|
|
in_chs,
|
|
|
|
|
channels,
|
|
|
|
|
noise_upsample_scale * 2,
|
|
|
|
|
stride=noise_upsample_scale,
|
|
|
|
|
padding=noise_upsample_scale // 2 + noise_upsample_scale %
|
|
|
|
|
2,
|
|
|
|
|
output_padding=noise_upsample_scale % 2,
|
|
|
|
|
bias_attr=bias, ))
|
|
|
|
|
noise_upsample.append(
|
|
|
|
|
get_activation(noise_upsample_activation, **
|
|
|
|
|
noise_upsample_activation_params))
|
|
|
|
|
in_chs = channels
|
|
|
|
|
self.noise_upsample = nn.Sequential(*noise_upsample)
|
|
|
|
|
self.noise_upsample_factor = np.prod(noise_upsample_scales)
|
|
|
|
|
|
|
|
|
|
self.blocks = nn.LayerList()
|
|
|
|
|
aux_chs = aux_channels
|
|
|
|
|
for upsample_scale in upsample_scales:
|
|
|
|
|
self.blocks.append(
|
|
|
|
|
TADEResBlock(
|
|
|
|
|
in_channels=channels,
|
|
|
|
|
aux_channels=aux_chs,
|
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
|
dilation=dilation,
|
|
|
|
|
bias=bias,
|
|
|
|
|
upsample_factor=upsample_scale,
|
|
|
|
|
upsample_mode=upsample_mode,
|
|
|
|
|
gated_function=gated_function, ), )
|
|
|
|
|
aux_chs = channels
|
|
|
|
|
self.upsample_factor = np.prod(upsample_scales)
|
|
|
|
|
|
|
|
|
|
self.output_conv = nn.Sequential(
|
|
|
|
|
nn.Conv1D(
|
|
|
|
|
channels,
|
|
|
|
|
out_channels,
|
|
|
|
|
kernel_size,
|
|
|
|
|
1,
|
|
|
|
|
bias_attr=bias,
|
|
|
|
|
padding=(kernel_size - 1) // 2, ),
|
|
|
|
|
nn.Tanh(), )
|
|
|
|
|
|
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
|
|
|
|
|
|
# apply weight norm
|
|
|
|
|
if use_weight_norm:
|
|
|
|
|
self.apply_weight_norm()
|
|
|
|
|
|
|
|
|
|
# reset parameters
|
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
|
|
def forward(self, c, z=None):
|
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
c : Tensor
|
|
|
|
|
Auxiliary input tensor (B, channels, T).
|
|
|
|
|
z : Tensor
|
|
|
|
|
Input noise tensor (B, in_channels, 1).
|
|
|
|
|
Returns
|
|
|
|
|
----------
|
|
|
|
|
Tensor
|
|
|
|
|
Output tensor (B, out_channels, T ** prod(upsample_scales)).
|
|
|
|
|
"""
|
|
|
|
|
# batch_max_steps(24000) == noise_upsample_factor(80) * upsample_factor(300)
|
|
|
|
|
if z is None:
|
|
|
|
|
z = paddle.randn([paddle.shape(c)[0], self.in_channels, 1])
|
|
|
|
|
# (B, in_channels, noise_upsample_factor).
|
|
|
|
|
x = self.noise_upsample(z)
|
|
|
|
|
for block in self.blocks:
|
|
|
|
|
x, c = block(x, c)
|
|
|
|
|
x = self.output_conv(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def apply_weight_norm(self):
|
|
|
|
|
"""Recursively apply weight normalization to all the Convolution layers
|
|
|
|
|
in the sublayers.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _apply_weight_norm(layer):
|
|
|
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv1DTranspose)):
|
|
|
|
|
nn.utils.weight_norm(layer)
|
|
|
|
|
|
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
|
|
|
|
|
|
def remove_weight_norm(self):
|
|
|
|
|
"""Recursively remove weight normalization from all the Convolution
|
|
|
|
|
layers in the sublayers.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _remove_weight_norm(layer):
|
|
|
|
|
try:
|
|
|
|
|
if layer:
|
|
|
|
|
nn.utils.remove_weight_norm(layer)
|
|
|
|
|
except ValueError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
|
"""Reset parameters.
|
|
|
|
|
This initialization follows official implementation manner.
|
|
|
|
|
https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py
|
|
|
|
|
"""
|
|
|
|
|
# 定义参数为float的正态分布。
|
|
|
|
|
dist = paddle.distribution.Normal(loc=0.0, scale=0.02)
|
|
|
|
|
|
|
|
|
|
def _reset_parameters(m):
|
|
|
|
|
if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose):
|
|
|
|
|
w = dist.sample(m.weight.shape)
|
|
|
|
|
m.weight.set_value(w)
|
|
|
|
|
|
|
|
|
|
self.apply(_reset_parameters)
|
|
|
|
|
|
|
|
|
|
def inference(self, c):
|
|
|
|
|
"""Perform inference.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
c : Tensor
|
|
|
|
|
Input tensor (T, in_channels).
|
|
|
|
|
Returns
|
|
|
|
|
----------
|
|
|
|
|
Tensor
|
|
|
|
|
Output tensor (T ** prod(upsample_scales), out_channels).
|
|
|
|
|
"""
|
|
|
|
|
# (1, in_channels, T)
|
|
|
|
|
c = c.transpose([1, 0]).unsqueeze(0)
|
|
|
|
|
c_shape = paddle.shape(c)
|
|
|
|
|
# prepare noise input
|
|
|
|
|
# there is a bug in Paddle int division, we must convert a int tensor to int here
|
|
|
|
|
noise_size = (1, self.in_channels,
|
|
|
|
|
math.ceil(int(c_shape[2]) / self.noise_upsample_factor))
|
|
|
|
|
# (1, in_channels, T/noise_upsample_factor)
|
|
|
|
|
noise = paddle.randn(noise_size)
|
|
|
|
|
# (1, in_channels, T)
|
|
|
|
|
x = self.noise_upsample(noise)
|
|
|
|
|
x_shape = paddle.shape(x)
|
|
|
|
|
total_length = c_shape[2] * self.upsample_factor
|
|
|
|
|
c = F.pad(
|
|
|
|
|
c, (0, x_shape[2] - c_shape[2]), "replicate", data_format="NCL")
|
|
|
|
|
# c.shape[2] == x.shape[2] here
|
|
|
|
|
# (1, in_channels, T*prod(upsample_scales))
|
|
|
|
|
for block in self.blocks:
|
|
|
|
|
x, c = block(x, c)
|
|
|
|
|
x = self.output_conv(x)[..., :total_length]
|
|
|
|
|
return x.squeeze(0).transpose([1, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# StyleMelGANDiscriminator 不需要 remove weight norm 嘛?
|
|
|
|
|
class StyleMelGANDiscriminator(nn.Layer):
|
|
|
|
|
"""Style MelGAN disciminator module."""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
repeats: int=2,
|
|
|
|
|
window_sizes: List[int]=[512, 1024, 2048, 4096],
|
|
|
|
|
pqmf_params: List[List[int]]=[
|
|
|
|
|
[1, None, None, None],
|
|
|
|
|
[2, 62, 0.26700, 9.0],
|
|
|
|
|
[4, 62, 0.14200, 9.0],
|
|
|
|
|
[8, 62, 0.07949, 9.0],
|
|
|
|
|
],
|
|
|
|
|
discriminator_params: Dict[str, Any]={
|
|
|
|
|
"out_channels": 1,
|
|
|
|
|
"kernel_sizes": [5, 3],
|
|
|
|
|
"channels": 16,
|
|
|
|
|
"max_downsample_channels": 512,
|
|
|
|
|
"bias": True,
|
|
|
|
|
"downsample_scales": [4, 4, 4, 1],
|
|
|
|
|
"nonlinear_activation": "leakyrelu",
|
|
|
|
|
"nonlinear_activation_params": {
|
|
|
|
|
"negative_slope": 0.2
|
|
|
|
|
},
|
|
|
|
|
"pad": "Pad1D",
|
|
|
|
|
"pad_params": {
|
|
|
|
|
"mode": "reflect"
|
|
|
|
|
},
|
|
|
|
|
},
|
|
|
|
|
use_weight_norm: bool=True,
|
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
|
"""Initilize Style MelGAN discriminator.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
repeats : int
|
|
|
|
|
Number of repititons to apply RWD.
|
|
|
|
|
window_sizes : list
|
|
|
|
|
List of random window sizes.
|
|
|
|
|
pqmf_params : list
|
|
|
|
|
List of list of Parameters for PQMF modules
|
|
|
|
|
discriminator_params : dict
|
|
|
|
|
Parameters for base discriminator module.
|
|
|
|
|
use_weight_nom : bool
|
|
|
|
|
Whether to apply weight normalization.
|
|
|
|
|
"""
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
|
|
# window size check
|
|
|
|
|
assert len(window_sizes) == len(pqmf_params)
|
|
|
|
|
sizes = [ws // p[0] for ws, p in zip(window_sizes, pqmf_params)]
|
|
|
|
|
assert len(window_sizes) == sum([sizes[0] == size for size in sizes])
|
|
|
|
|
|
|
|
|
|
self.repeats = repeats
|
|
|
|
|
self.window_sizes = window_sizes
|
|
|
|
|
self.pqmfs = nn.LayerList()
|
|
|
|
|
self.discriminators = nn.LayerList()
|
|
|
|
|
for pqmf_param in pqmf_params:
|
|
|
|
|
d_params = copy.deepcopy(discriminator_params)
|
|
|
|
|
d_params["in_channels"] = pqmf_param[0]
|
|
|
|
|
if pqmf_param[0] == 1:
|
|
|
|
|
self.pqmfs.append(nn.Identity())
|
|
|
|
|
else:
|
|
|
|
|
self.pqmfs.append(PQMF(*pqmf_param))
|
|
|
|
|
self.discriminators.append(BaseDiscriminator(**d_params))
|
|
|
|
|
|
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
|
|
|
|
|
|
# apply weight norm
|
|
|
|
|
if use_weight_norm:
|
|
|
|
|
self.apply_weight_norm()
|
|
|
|
|
|
|
|
|
|
# reset parameters
|
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
x : Tensor
|
|
|
|
|
Input tensor (B, 1, T).
|
|
|
|
|
Returns
|
|
|
|
|
----------
|
|
|
|
|
List
|
|
|
|
|
List of discriminator outputs, #items in the list will be
|
|
|
|
|
equal to repeats * #discriminators.
|
|
|
|
|
"""
|
|
|
|
|
outs = []
|
|
|
|
|
for _ in range(self.repeats):
|
|
|
|
|
outs += self._forward(x)
|
|
|
|
|
return outs
|
|
|
|
|
|
|
|
|
|
def _forward(self, x):
|
|
|
|
|
outs = []
|
|
|
|
|
for idx, (ws, pqmf, disc) in enumerate(
|
|
|
|
|
zip(self.window_sizes, self.pqmfs, self.discriminators)):
|
|
|
|
|
start_idx = int(np.random.randint(paddle.shape(x)[-1] - ws))
|
|
|
|
|
x_ = x[:, :, start_idx:start_idx + ws]
|
|
|
|
|
if idx == 0:
|
|
|
|
|
# nn.Identity()
|
|
|
|
|
x_ = pqmf(x_)
|
|
|
|
|
else:
|
|
|
|
|
x_ = pqmf.analysis(x_)
|
|
|
|
|
outs += [disc(x_)]
|
|
|
|
|
return outs
|
|
|
|
|
|
|
|
|
|
def apply_weight_norm(self):
|
|
|
|
|
"""Recursively apply weight normalization to all the Convolution layers
|
|
|
|
|
in the sublayers.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _apply_weight_norm(layer):
|
|
|
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv1DTranspose)):
|
|
|
|
|
nn.utils.weight_norm(layer)
|
|
|
|
|
|
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
|
|
|
|
|
|
def remove_weight_norm(self):
|
|
|
|
|
"""Recursively remove weight normalization from all the Convolution
|
|
|
|
|
layers in the sublayers.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _remove_weight_norm(layer):
|
|
|
|
|
try:
|
|
|
|
|
nn.utils.remove_weight_norm(layer)
|
|
|
|
|
except ValueError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
|
"""Reset parameters.
|
|
|
|
|
This initialization follows official implementation manner.
|
|
|
|
|
https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py
|
|
|
|
|
"""
|
|
|
|
|
# 定义参数为float的正态分布。
|
|
|
|
|
dist = paddle.distribution.Normal(loc=0.0, scale=0.02)
|
|
|
|
|
|
|
|
|
|
def _reset_parameters(m):
|
|
|
|
|
if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose):
|
|
|
|
|
w = dist.sample(m.weight.shape)
|
|
|
|
|
m.weight.set_value(w)
|
|
|
|
|
|
|
|
|
|
self.apply(_reset_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StyleMelGANInference(nn.Layer):
|
|
|
|
|
def __init__(self, normalizer, style_melgan_generator):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.normalizer = normalizer
|
|
|
|
|
self.style_melgan_generator = style_melgan_generator
|
|
|
|
|
|
|
|
|
|
def forward(self, logmel):
|
|
|
|
|
normalized_mel = self.normalizer(logmel)
|
|
|
|
|
wav = self.style_melgan_generator.inference(normalized_mel)
|
|
|
|
|
return wav
|