|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import math
|
|
|
|
|
|
|
|
from paddle import nn
|
|
|
|
from paddle import Tensor
|
|
|
|
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
class NewGELUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
|
|
|
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return 0.5 * input * (1.0 + paddle.tanh(
|
|
|
|
math.sqrt(2.0 / math.pi) *
|
|
|
|
(input + 0.044715 * paddle.pow(input, 3.0))))
|
|
|
|
|
|
|
|
|
|
|
|
class GELUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
|
|
|
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
|
|
|
paddle.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * paddle.pow(x, 3)))) This is now written in C in nn.functional
|
|
|
|
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, use_gelu_python: bool=False):
|
|
|
|
super().__init__()
|
|
|
|
self.act = nn.functional.gelu
|
|
|
|
|
|
|
|
def _gelu_python(self, input: Tensor) -> Tensor:
|
|
|
|
return input * 0.5 * (1.0 + paddle.erf(input / math.sqrt(2.0)))
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return self.act(input)
|
|
|
|
|
|
|
|
|
|
|
|
class FastGELUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return 0.5 * input * (
|
|
|
|
1.0 + paddle.tanh(input * 0.7978845608 *
|
|
|
|
(1.0 + 0.044715 * input * input)))
|
|
|
|
|
|
|
|
|
|
|
|
class QuickGELUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return input * paddle.sigmoid(1.702 * input)
|
|
|
|
|
|
|
|
|
|
|
|
class ClippedGELUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
|
|
|
|
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
|
|
|
https://arxiv.org/abs/2004.09602.
|
|
|
|
|
|
|
|
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
|
|
|
initially created.
|
|
|
|
|
|
|
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
|
|
|
paddle.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * paddle.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, min: float, max: float):
|
|
|
|
if min > max:
|
|
|
|
raise ValueError(
|
|
|
|
f"min should be < max (got min: {min}, max: {max})")
|
|
|
|
|
|
|
|
super().__init__()
|
|
|
|
self.min = min
|
|
|
|
self.max = max
|
|
|
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
|
|
return paddle.clip(gelu(x), self.min, self.max)
|
|
|
|
|
|
|
|
|
|
|
|
class SiLUActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
|
|
|
|
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
|
|
|
|
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
|
|
|
|
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
|
|
|
|
later.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.act = nn.functional.silu
|
|
|
|
|
|
|
|
def _silu_python(self, input: Tensor) -> Tensor:
|
|
|
|
return input * paddle.sigmoid(input)
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return self.act(input)
|
|
|
|
|
|
|
|
|
|
|
|
class MishActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
|
|
|
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.act = nn.functional.mish
|
|
|
|
|
|
|
|
def _mish_python(self, input: Tensor) -> Tensor:
|
|
|
|
return input * paddle.tanh(nn.functional.softplus(input))
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return self.act(input)
|
|
|
|
|
|
|
|
|
|
|
|
class LinearActivation(nn.Layer):
|
|
|
|
"""
|
|
|
|
Applies the linear activation function, i.e. forwarding input directly to output.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return input
|
|
|
|
|
|
|
|
|
|
|
|
ACT2FN = {
|
|
|
|
"gelu": GELUActivation(),
|
|
|
|
"gelu_10": ClippedGELUActivation(-10, 10),
|
|
|
|
"gelu_fast": FastGELUActivation(),
|
|
|
|
"gelu_new": NewGELUActivation(),
|
|
|
|
"gelu_python": GELUActivation(use_gelu_python=True),
|
|
|
|
"linear": LinearActivation(),
|
|
|
|
"mish": MishActivation(),
|
|
|
|
"quick_gelu": QuickGELUActivation(),
|
|
|
|
"relu": nn.ReLU(),
|
|
|
|
"sigmoid": nn.Sigmoid(),
|
|
|
|
"silu": SiLUActivation(),
|
|
|
|
"swish": SiLUActivation(),
|
|
|
|
"tanh": nn.Tanh(),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def get_activation(activation_string):
|
|
|
|
if activation_string in ACT2FN:
|
|
|
|
return ACT2FN[activation_string]
|
|
|
|
else:
|
|
|
|
raise KeyError(
|
|
|
|
f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# For backwards compatibility with: from activations import gelu_python
|
|
|
|
gelu_python = get_activation("gelu_python")
|
|
|
|
gelu_new = get_activation("gelu_new")
|
|
|
|
gelu = get_activation("gelu")
|
|
|
|
gelu_fast = get_activation("gelu_fast")
|
|
|
|
quick_gelu = get_activation("quick_gelu")
|
|
|
|
silu = get_activation("silu")
|
|
|
|
mish = get_activation("mish")
|
|
|
|
linear_act = get_activation("linear")
|