|
|
|
#
|
|
|
|
# Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved.
|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
# This file is part of the WebDataset library.
|
|
|
|
# See the LICENSE file for licensing terms (BSD-style).
|
|
|
|
#
|
|
|
|
|
|
|
|
# Modified from https://github.com/webdataset/webdataset
|
|
|
|
|
|
|
|
"""Train PyTorch models directly from POSIX tar archive.
|
|
|
|
|
|
|
|
Code works locally or over HTTP connections.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os, random, sys, time
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from itertools import islice
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import braceexpand, yaml
|
|
|
|
|
|
|
|
from . import utils
|
|
|
|
from .filters import pipelinefilter
|
|
|
|
from .paddle_utils import IterableDataset
|
|
|
|
|
|
|
|
|
|
|
|
from ..utils.log import Logger
|
|
|
|
logger = Logger(__name__)
|
|
|
|
def expand_urls(urls):
|
|
|
|
if isinstance(urls, str):
|
|
|
|
urllist = urls.split("::")
|
|
|
|
result = []
|
|
|
|
for url in urllist:
|
|
|
|
result.extend(braceexpand.braceexpand(url))
|
|
|
|
return result
|
|
|
|
else:
|
|
|
|
return list(urls)
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleShardList(IterableDataset):
|
|
|
|
"""An iterable dataset yielding a list of urls."""
|
|
|
|
|
|
|
|
def __init__(self, urls, seed=None):
|
|
|
|
"""Iterate through the list of shards.
|
|
|
|
|
|
|
|
:param urls: a list of URLs as a Python list or brace notation string
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
urls = expand_urls(urls)
|
|
|
|
self.urls = urls
|
|
|
|
assert isinstance(self.urls[0], str)
|
|
|
|
self.seed = seed
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.urls)
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
"""Return an iterator over the shards."""
|
|
|
|
urls = self.urls.copy()
|
|
|
|
if self.seed is not None:
|
|
|
|
random.Random(self.seed).shuffle(urls)
|
|
|
|
for url in urls:
|
|
|
|
yield dict(url=url)
|
|
|
|
|
|
|
|
|
|
|
|
def split_by_node(src, group=None):
|
|
|
|
rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
|
|
|
|
logger.info(f"world_size:{world_size}, rank:{rank}")
|
|
|
|
if world_size > 1:
|
|
|
|
for s in islice(src, rank, None, world_size):
|
|
|
|
yield s
|
|
|
|
else:
|
|
|
|
for s in src:
|
|
|
|
yield s
|
|
|
|
|
|
|
|
|
|
|
|
def single_node_only(src, group=None):
|
|
|
|
rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
|
|
|
|
if world_size > 1:
|
|
|
|
raise ValueError("input pipeline needs to be reconfigured for multinode training")
|
|
|
|
for s in src:
|
|
|
|
yield s
|
|
|
|
|
|
|
|
|
|
|
|
def split_by_worker(src):
|
|
|
|
rank, world_size, worker, num_workers = utils.paddle_worker_info()
|
|
|
|
logger.info(f"num_workers:{num_workers}, worker:{worker}")
|
|
|
|
if num_workers > 1:
|
|
|
|
for s in islice(src, worker, None, num_workers):
|
|
|
|
yield s
|
|
|
|
else:
|
|
|
|
for s in src:
|
|
|
|
yield s
|
|
|
|
|
|
|
|
|
|
|
|
def resampled_(src, n=sys.maxsize):
|
|
|
|
import random
|
|
|
|
|
|
|
|
seed = time.time()
|
|
|
|
try:
|
|
|
|
seed = open("/dev/random", "rb").read(20)
|
|
|
|
except Exception as exn:
|
|
|
|
print(repr(exn)[:50], file=sys.stderr)
|
|
|
|
rng = random.Random(seed)
|
|
|
|
print("# resampled loading", file=sys.stderr)
|
|
|
|
items = list(src)
|
|
|
|
print(f"# resampled got {len(items)} samples, yielding {n}", file=sys.stderr)
|
|
|
|
for i in range(n):
|
|
|
|
yield rng.choice(items)
|
|
|
|
|
|
|
|
|
|
|
|
resampled = pipelinefilter(resampled_)
|
|
|
|
|
|
|
|
|
|
|
|
def non_empty(src):
|
|
|
|
count = 0
|
|
|
|
for s in src:
|
|
|
|
yield s
|
|
|
|
count += 1
|
|
|
|
if count == 0:
|
|
|
|
raise ValueError("pipeline stage received no data at all and this was declared as an error")
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class MSSource:
|
|
|
|
"""Class representing a data source."""
|
|
|
|
|
|
|
|
name: str = ""
|
|
|
|
perepoch: int = -1
|
|
|
|
resample: bool = False
|
|
|
|
urls: List[str] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
|
|
default_rng = random.Random()
|
|
|
|
|
|
|
|
|
|
|
|
def expand(s):
|
|
|
|
return os.path.expanduser(os.path.expandvars(s))
|
|
|
|
|
|
|
|
|
|
|
|
class MultiShardSample(IterableDataset):
|
|
|
|
def __init__(self, fname):
|
|
|
|
"""Construct a shardlist from multiple sources using a YAML spec."""
|
|
|
|
self.epoch = -1
|
|
|
|
class MultiShardSample(IterableDataset):
|
|
|
|
def __init__(self, fname):
|
|
|
|
"""Construct a shardlist from multiple sources using a YAML spec."""
|
|
|
|
self.epoch = -1
|
|
|
|
self.parse_spec(fname)
|
|
|
|
|
|
|
|
def parse_spec(self, fname):
|
|
|
|
self.rng = default_rng # capture default_rng if we fork
|
|
|
|
if isinstance(fname, dict):
|
|
|
|
spec = fname
|
|
|
|
fname = "{dict}"
|
|
|
|
else:
|
|
|
|
with open(fname) as stream:
|
|
|
|
spec = yaml.safe_load(stream)
|
|
|
|
assert set(spec.keys()).issubset(set("prefix datasets buckets".split())), list(spec.keys())
|
|
|
|
prefix = expand(spec.get("prefix", ""))
|
|
|
|
self.sources = []
|
|
|
|
for ds in spec["datasets"]:
|
|
|
|
assert set(ds.keys()).issubset(set("buckets name shards resample choose".split())), list(
|
|
|
|
ds.keys()
|
|
|
|
)
|
|
|
|
buckets = ds.get("buckets", spec.get("buckets", []))
|
|
|
|
if isinstance(buckets, str):
|
|
|
|
buckets = [buckets]
|
|
|
|
buckets = [expand(s) for s in buckets]
|
|
|
|
if buckets == []:
|
|
|
|
buckets = [""]
|
|
|
|
assert len(buckets) == 1, f"{buckets}: FIXME support for multiple buckets unimplemented"
|
|
|
|
bucket = buckets[0]
|
|
|
|
name = ds.get("name", "@" + bucket)
|
|
|
|
urls = ds["shards"]
|
|
|
|
if isinstance(urls, str):
|
|
|
|
urls = [urls]
|
|
|
|
# urls = [u for url in urls for u in braceexpand.braceexpand(url)]
|
|
|
|
urls = [
|
|
|
|
prefix + os.path.join(bucket, u) for url in urls for u in braceexpand.braceexpand(expand(url))
|
|
|
|
]
|
|
|
|
resample = ds.get("resample", -1)
|
|
|
|
nsample = ds.get("choose", -1)
|
|
|
|
if nsample > len(urls):
|
|
|
|
raise ValueError(f"perepoch {nsample} must be no greater than the number of shards")
|
|
|
|
if (nsample > 0) and (resample > 0):
|
|
|
|
raise ValueError("specify only one of perepoch or choose")
|
|
|
|
entry = MSSource(name=name, urls=urls, perepoch=nsample, resample=resample)
|
|
|
|
self.sources.append(entry)
|
|
|
|
print(f"# {name} {len(urls)} {nsample}", file=sys.stderr)
|
|
|
|
|
|
|
|
def set_epoch(self, seed):
|
|
|
|
"""Set the current epoch (for consistent shard selection among nodes)."""
|
|
|
|
self.rng = random.Random(seed)
|
|
|
|
|
|
|
|
def get_shards_for_epoch(self):
|
|
|
|
result = []
|
|
|
|
for source in self.sources:
|
|
|
|
if source.resample > 0:
|
|
|
|
# sample with replacement
|
|
|
|
l = self.rng.choices(source.urls, k=source.resample)
|
|
|
|
elif source.perepoch > 0:
|
|
|
|
# sample without replacement
|
|
|
|
l = list(source.urls)
|
|
|
|
self.rng.shuffle(l)
|
|
|
|
l = l[: source.perepoch]
|
|
|
|
else:
|
|
|
|
l = list(source.urls)
|
|
|
|
result += l
|
|
|
|
self.rng.shuffle(result)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
shards = self.get_shards_for_epoch()
|
|
|
|
for shard in shards:
|
|
|
|
yield dict(url=shard)
|
|
|
|
|
|
|
|
|
|
|
|
def shardspec(spec):
|
|
|
|
if spec.endswith(".yaml"):
|
|
|
|
return MultiShardSample(spec)
|
|
|
|
else:
|
|
|
|
return SimpleShardList(spec)
|
|
|
|
|
|
|
|
|
|
|
|
class ResampledShards(IterableDataset):
|
|
|
|
"""An iterable dataset yielding a list of urls."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
urls,
|
|
|
|
nshards=sys.maxsize,
|
|
|
|
worker_seed=None,
|
|
|
|
deterministic=False,
|
|
|
|
):
|
|
|
|
"""Sample shards from the shard list with replacement.
|
|
|
|
|
|
|
|
:param urls: a list of URLs as a Python list or brace notation string
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
urls = expand_urls(urls)
|
|
|
|
self.urls = urls
|
|
|
|
assert isinstance(self.urls[0], str)
|
|
|
|
self.nshards = nshards
|
|
|
|
self.worker_seed = utils.paddle_worker_seed if worker_seed is None else worker_seed
|
|
|
|
self.deterministic = deterministic
|
|
|
|
self.epoch = -1
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
"""Return an iterator over the shards."""
|
|
|
|
self.epoch += 1
|
|
|
|
if self.deterministic:
|
|
|
|
seed = utils.make_seed(self.worker_seed(), self.epoch)
|
|
|
|
else:
|
|
|
|
seed = utils.make_seed(self.worker_seed(), self.epoch, os.getpid(), time.time_ns(), os.urandom(4))
|
|
|
|
if os.environ.get("WDS_SHOW_SEED", "0") == "1":
|
|
|
|
print(f"# ResampledShards seed {seed}")
|
|
|
|
self.rng = random.Random(seed)
|
|
|
|
for _ in range(self.nshards):
|
|
|
|
index = self.rng.randint(0, len(self.urls) - 1)
|
|
|
|
yield dict(url=self.urls[index])
|