|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from paddle import distributed as dist
|
|
|
|
from paddle.io import DataLoader
|
|
|
|
from paddle.nn import Layer
|
|
|
|
from paddle.optimizer import Optimizer
|
|
|
|
from paddle.optimizer.lr import LRScheduler
|
|
|
|
|
|
|
|
from paddlespeech.t2s.modules.losses import MLMLoss
|
|
|
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
|
|
|
from paddlespeech.t2s.training.reporter import report
|
|
|
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
|
|
|
logging.basicConfig(
|
|
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
class ErnieSATUpdater(StandardUpdater):
|
|
|
|
def __init__(self,
|
|
|
|
model: Layer,
|
|
|
|
optimizer: Optimizer,
|
|
|
|
scheduler: LRScheduler,
|
|
|
|
dataloader: DataLoader,
|
|
|
|
init_state=None,
|
|
|
|
text_masking: bool=False,
|
|
|
|
odim: int=80,
|
|
|
|
vocab_size: int=100,
|
|
|
|
output_dir: Path=None):
|
|
|
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
|
|
|
self.scheduler = scheduler
|
|
|
|
|
|
|
|
self.criterion = MLMLoss(
|
|
|
|
text_masking=text_masking, odim=odim, vocab_size=vocab_size)
|
|
|
|
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
|
|
logger.addHandler(self.filehandler)
|
|
|
|
self.logger = logger
|
|
|
|
self.msg = ""
|
|
|
|
|
|
|
|
def update_core(self, batch):
|
|
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
|
|
losses_dict = {}
|
|
|
|
|
|
|
|
before_outs, after_outs, text_outs = self.model(
|
|
|
|
speech=batch["speech"],
|
|
|
|
text=batch["text"],
|
|
|
|
masked_pos=batch["masked_pos"],
|
|
|
|
speech_mask=batch["speech_mask"],
|
|
|
|
text_mask=batch["text_mask"],
|
|
|
|
speech_seg_pos=batch["speech_seg_pos"],
|
|
|
|
text_seg_pos=batch["text_seg_pos"])
|
|
|
|
|
|
|
|
mlm_loss, text_mlm_loss = self.criterion(
|
|
|
|
speech=batch["speech"],
|
|
|
|
before_outs=before_outs,
|
|
|
|
after_outs=after_outs,
|
|
|
|
masked_pos=batch["masked_pos"],
|
|
|
|
text=batch["text"],
|
|
|
|
# maybe None
|
|
|
|
text_outs=text_outs,
|
|
|
|
# maybe None
|
|
|
|
text_masked_pos=batch["text_masked_pos"])
|
|
|
|
|
|
|
|
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
|
|
|
|
|
|
|
|
self.optimizer.clear_grad()
|
|
|
|
|
|
|
|
loss.backward()
|
|
|
|
self.optimizer.step()
|
|
|
|
self.scheduler.step()
|
|
|
|
scheduler_msg = 'lr: {}'.format(self.scheduler.last_lr)
|
|
|
|
|
|
|
|
report("train/loss", float(loss))
|
|
|
|
report("train/mlm_loss", float(mlm_loss))
|
|
|
|
if text_mlm_loss is not None:
|
|
|
|
report("train/text_mlm_loss", float(text_mlm_loss))
|
|
|
|
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
|
|
|
|
|
|
|
|
losses_dict["mlm_loss"] = float(mlm_loss)
|
|
|
|
losses_dict["loss"] = float(loss)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
self.msg += ', ' + scheduler_msg
|
|
|
|
|
|
|
|
|
|
|
|
class ErnieSATEvaluator(StandardEvaluator):
|
|
|
|
def __init__(self,
|
|
|
|
model: Layer,
|
|
|
|
dataloader: DataLoader,
|
|
|
|
text_masking: bool=False,
|
|
|
|
odim: int=80,
|
|
|
|
vocab_size: int=100,
|
|
|
|
output_dir: Path=None):
|
|
|
|
super().__init__(model, dataloader)
|
|
|
|
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
|
|
logger.addHandler(self.filehandler)
|
|
|
|
self.logger = logger
|
|
|
|
self.msg = ""
|
|
|
|
|
|
|
|
self.criterion = MLMLoss(
|
|
|
|
text_masking=text_masking, odim=odim, vocab_size=vocab_size)
|
|
|
|
|
|
|
|
def evaluate_core(self, batch):
|
|
|
|
self.msg = "Evaluate: "
|
|
|
|
losses_dict = {}
|
|
|
|
|
|
|
|
before_outs, after_outs, text_outs = self.model(
|
|
|
|
speech=batch["speech"],
|
|
|
|
text=batch["text"],
|
|
|
|
masked_pos=batch["masked_pos"],
|
|
|
|
speech_mask=batch["speech_mask"],
|
|
|
|
text_mask=batch["text_mask"],
|
|
|
|
speech_seg_pos=batch["speech_seg_pos"],
|
|
|
|
text_seg_pos=batch["text_seg_pos"])
|
|
|
|
|
|
|
|
mlm_loss, text_mlm_loss = self.criterion(
|
|
|
|
speech=batch["speech"],
|
|
|
|
before_outs=before_outs,
|
|
|
|
after_outs=after_outs,
|
|
|
|
masked_pos=batch["masked_pos"],
|
|
|
|
text=batch["text"],
|
|
|
|
# maybe None
|
|
|
|
text_outs=text_outs,
|
|
|
|
# maybe None
|
|
|
|
text_masked_pos=batch["text_masked_pos"])
|
|
|
|
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
|
|
|
|
|
|
|
|
report("eval/loss", float(loss))
|
|
|
|
report("eval/mlm_loss", float(mlm_loss))
|
|
|
|
if text_mlm_loss is not None:
|
|
|
|
report("eval/text_mlm_loss", float(text_mlm_loss))
|
|
|
|
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
|
|
|
|
|
|
|
|
losses_dict["mlm_loss"] = float(mlm_loss)
|
|
|
|
losses_dict["loss"] = float(loss)
|
|
|
|
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
|
|
for k, v in losses_dict.items())
|
|
|
|
self.logger.info(self.msg)
|