You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/wav2vec2_ASR.py

242 lines
9.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Dict
from typing import List
from typing import Tuple
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlespeech.s2t.models.wav2vec2.modules.modeling_wav2vec2 import Wav2Vec2ConfigPure
from paddlespeech.s2t.models.wav2vec2.modules.modeling_wav2vec2 import Wav2Vec2Model
from paddlespeech.s2t.models.wav2vec2.modules.VanillaNN import VanillaNN
from paddlespeech.s2t.modules.ctc import CTCDecoderBase as CTC
from paddlespeech.s2t.utils.ctc_utils import remove_duplicates_and_blank
from paddlespeech.s2t.utils.utility import log_add
class Wav2vec2ASR(nn.Layer):
def __init__(self, config: dict):
super().__init__()
wav2vec2_config = Wav2Vec2ConfigPure(config)
wav2vec2 = Wav2Vec2Model(wav2vec2_config)
model_dict = paddle.load(config.wav2vec2_params_path)
wav2vec2.set_state_dict(model_dict)
self.normalize_wav = config.normalize_wav
self.output_norm = config.output_norm
if config.freeze_wav2vec2:
wav2vec2.eval()
for parm in wav2vec2.parameters():
parm.trainable = False
self.wav2vec2 = wav2vec2
self.enc = VanillaNN(
input_shape=[None, None, wav2vec2_config.hidden_size],
activation=nn.LeakyReLU,
dnn_blocks=config.dnn_blocks,
dnn_neurons=config.dnn_neurons)
self.ctc = CTC(odim=config.output_dim,
enc_n_units=config.dnn_neurons,
blank_id=config.blank_id,
dropout_rate=config.ctc_dropout_rate,
reduction='mean')
def forward(self, wav, wavs_lens_rate, target, target_lens_rate):
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
x_lens = (wavs_lens_rate * x.shape[1]).round().astype(paddle.int64)
target_lens = (target_lens_rate *
target.shape[1]).round().astype(paddle.int64)
ctc_loss = self.ctc(x, x_lens, target, target_lens)
return ctc_loss
@paddle.no_grad()
def decode(self,
feats: paddle.Tensor,
text_feature: Dict[str, int],
decoding_method: str,
beam_size: int):
batch_size = feats.shape[0]
if decoding_method == 'ctc_prefix_beam_search' and batch_size > 1:
logger.error(
f'decoding mode {decoding_method} must be running with batch_size == 1'
)
logger.error(f"current batch_size is {batch_size}")
sys.exit(1)
if decoding_method == 'ctc_greedy_search':
hyps = self.ctc_greedy_search(feats)
res = [text_feature.defeaturize(hyp) for hyp in hyps]
res_tokenids = [hyp for hyp in hyps]
# ctc_prefix_beam_search and attention_rescoring only return one
# result in List[int], change it to List[List[int]] for compatible
# with other batch decoding mode
elif decoding_method == 'ctc_prefix_beam_search':
assert feats.shape[0] == 1
hyp = self.ctc_prefix_beam_search(feats, beam_size)
res = [text_feature.defeaturize(hyp)]
res_tokenids = [hyp]
else:
raise ValueError(
f"wav2vec2 not support decoding method: {decoding_method}")
return res, res_tokenids
@classmethod
def from_config(cls, config):
model = cls(config)
return model
def ctc_greedy_search(self, wav) -> List[List[int]]:
""" Apply CTC greedy search
Args:
speech (paddle.Tensor): (batch, max_len)
speech_length (paddle.Tensor): (batch, )
Returns:
List[List[int]]: best path result
"""
batch_size = wav.shape[0]
wav = wav[:, :, 0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
x_lens = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (B, maxlen, vocab_size)
topk_prob, topk_index = ctc_probs.topk(1, axis=2) # (B, maxlen, 1)
topk_index = topk_index.view(batch_size, x_lens) # (B, maxlen)
hyps = [hyp.tolist() for hyp in topk_index]
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
return hyps
def _ctc_prefix_beam_search(
self,
wav,
beam_size,
blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]:
""" CTC prefix beam search inner implementation
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood)
paddle.Tensor: encoder output, (1, max_len, encoder_dim),
it will be used for rescoring in attention rescoring mode
"""
wav = wav[:, :, 0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
maxlen = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
# blank_ending_score and none_blank_ending_score in ln domain
cur_hyps = [(tuple(), (0.0, -float('inf')))]
# 2. CTC beam search step by step
for t in range(0, maxlen):
logp = ctc_probs[t] # (vocab_size,)
# key: prefix, value (pb, pnb), default value(-inf, -inf)
next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
# 2.1 First beam prune: select topk best
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
for s in top_k_index:
s = s.item()
ps = logp[s].item()
for prefix, (pb, pnb) in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if s == blank_id: # blank
n_pb, n_pnb = next_hyps[prefix]
n_pb = log_add([n_pb, pb + ps, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
elif s == last:
# Update *ss -> *s;
n_pb, n_pnb = next_hyps[prefix]
n_pnb = log_add([n_pnb, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
# Update *s-s -> *ss, - is for blank
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
else:
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
# 2.2 Second beam prune
next_hyps = sorted(
next_hyps.items(),
key=lambda x: log_add(list(x[1])),
reverse=True)
cur_hyps = next_hyps[:beam_size]
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
return hyps
def ctc_prefix_beam_search(self, wav, beam_size) -> List[int]:
""" Apply CTC prefix beam search
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[int]: CTC prefix beam search nbest results
"""
hyps = self._ctc_prefix_beam_search(wav, beam_size)
return hyps[0][0]