|
|
|
# Copyright (c) 2021 Binbin Zhang(binbzha@qq.com)
|
|
|
|
# 2022 Shaoqing Yu(954793264@qq.com)
|
|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from wekws(https://github.com/wenet-e2e/wekws)
|
|
|
|
import os
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from tqdm import tqdm
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
from paddlespeech.s2t.training.cli import default_argument_parser
|
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
|
|
|
|
|
|
|
|
|
def load_label_and_score(keyword_index: int,
|
|
|
|
ds: paddle.io.Dataset,
|
|
|
|
score_file: os.PathLike):
|
|
|
|
score_table = {} # {utt_id: scores_over_frames}
|
|
|
|
with open(score_file, 'r', encoding='utf8') as fin:
|
|
|
|
for line in fin:
|
|
|
|
arr = line.strip().split()
|
|
|
|
key = arr[0]
|
|
|
|
current_keyword = arr[1]
|
|
|
|
str_list = arr[2:]
|
|
|
|
if int(current_keyword) == keyword_index:
|
|
|
|
scores = list(map(float, str_list))
|
|
|
|
if key not in score_table:
|
|
|
|
score_table.update({key: scores})
|
|
|
|
keyword_table = {} # scores of keyword utt_id
|
|
|
|
filler_table = {} # scores of non-keyword utt_id
|
|
|
|
filler_duration = 0.0
|
|
|
|
|
|
|
|
for key, index, duration in zip(ds.keys, ds.labels, ds.durations):
|
|
|
|
assert key in score_table
|
|
|
|
if index == keyword_index:
|
|
|
|
keyword_table[key] = score_table[key]
|
|
|
|
else:
|
|
|
|
filler_table[key] = score_table[key]
|
|
|
|
filler_duration += duration
|
|
|
|
|
|
|
|
return keyword_table, filler_table, filler_duration
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = default_argument_parser()
|
|
|
|
parser.add_argument(
|
|
|
|
'--keyword_index', type=int, default=0, help='keyword index')
|
|
|
|
parser.add_argument(
|
|
|
|
'--step',
|
|
|
|
type=float,
|
|
|
|
default=0.01,
|
|
|
|
help='threshold step of trigger score')
|
|
|
|
parser.add_argument(
|
|
|
|
'--window_shift',
|
|
|
|
type=int,
|
|
|
|
default=50,
|
|
|
|
help='window_shift is used to skip the frames after triggered')
|
|
|
|
parser.add_argument(
|
|
|
|
"--score_file",
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help='output file of trigger scores')
|
|
|
|
parser.add_argument(
|
|
|
|
'--stats_file',
|
|
|
|
type=str,
|
|
|
|
default='./stats.0.txt',
|
|
|
|
help='output file of detection error tradeoff')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# https://yaml.org/type/float.html
|
|
|
|
config = CfgNode(new_allowed=True)
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
|
|
|
|
# Dataset
|
|
|
|
ds_class = dynamic_import(config['dataset'])
|
|
|
|
test_ds = ds_class(
|
|
|
|
data_dir=config['data_dir'],
|
|
|
|
mode='test',
|
|
|
|
feat_type=config['feat_type'],
|
|
|
|
sample_rate=config['sample_rate'],
|
|
|
|
frame_shift=config['frame_shift'],
|
|
|
|
frame_length=config['frame_length'],
|
|
|
|
n_mels=config['n_mels'], )
|
|
|
|
|
|
|
|
keyword_table, filler_table, filler_duration = load_label_and_score(
|
|
|
|
args.keyword_index, test_ds, args.score_file)
|
|
|
|
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
|
|
|
|
pbar = tqdm(total=int(1.0 / args.step))
|
|
|
|
with open(args.stats_file, 'w', encoding='utf8') as fout:
|
|
|
|
keyword_index = args.keyword_index
|
|
|
|
threshold = 0.0
|
|
|
|
while threshold <= 1.0:
|
|
|
|
num_false_reject = 0
|
|
|
|
# transverse the all keyword_table
|
|
|
|
for key, score_list in keyword_table.items():
|
|
|
|
# computer positive test sample, use the max score of list.
|
|
|
|
score = max(score_list)
|
|
|
|
if float(score) < threshold:
|
|
|
|
num_false_reject += 1
|
|
|
|
num_false_alarm = 0
|
|
|
|
# transverse the all filler_table
|
|
|
|
for key, score_list in filler_table.items():
|
|
|
|
i = 0
|
|
|
|
while i < len(score_list):
|
|
|
|
if score_list[i] >= threshold:
|
|
|
|
num_false_alarm += 1
|
|
|
|
i += args.window_shift
|
|
|
|
else:
|
|
|
|
i += 1
|
|
|
|
if len(keyword_table) != 0:
|
|
|
|
false_reject_rate = num_false_reject / len(keyword_table)
|
|
|
|
num_false_alarm = max(num_false_alarm, 1e-6)
|
|
|
|
if filler_duration != 0:
|
|
|
|
false_alarm_per_hour = num_false_alarm / \
|
|
|
|
(filler_duration / 3600.0)
|
|
|
|
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(
|
|
|
|
threshold, false_alarm_per_hour, false_reject_rate))
|
|
|
|
threshold += args.step
|
|
|
|
pbar.update(1)
|
|
|
|
|
|
|
|
pbar.close()
|
|
|
|
print('DET saved to: {}'.format(args.stats_file))
|