You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/speechx/examples/ds2_ol/onnx/local/infer_check.py

92 lines
2.9 KiB

#!/usr/bin/env python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import onnxruntime
import paddle
import os
import pickle
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--input_file',
type=str,
default="static_ds2online_inputs.pickle",
help="ds2 input pickle file.",
)
parser.add_argument(
'--model_dir',
type=str,
default=".",
help="paddle model dir."
)
parser.add_argument(
'--model_prefix',
type=str,
default="avg_1.jit",
help="paddle model prefix."
)
parser.add_argument(
'--onnx_model',
type=str,
default='./model.old.onnx',
help="onnx model."
)
return parser.parse_args()
if __name__ == '__main__':
FLAGS = parse_args()
# input and output
with open(FLAGS.input_file, 'rb') as f:
iodict = pickle.load(f)
print(iodict.keys())
audio_chunk = iodict['audio_chunk']
audio_chunk_lens = iodict['audio_chunk_lens']
chunk_state_h_box = iodict['chunk_state_h_box']
chunk_state_c_box = iodict['chunk_state_c_bos']
# paddle
model = paddle.jit.load(os.path.join(FLAGS.model_dir, FLAGS.model_prefix))
res_chunk, res_lens, chunk_state_h, chunk_state_c = model(
paddle.to_tensor(audio_chunk),
paddle.to_tensor(audio_chunk_lens),
paddle.to_tensor(chunk_state_h_box),
paddle.to_tensor(chunk_state_c_box),
)
# onnxruntime
options = onnxruntime.SessionOptions()
options.enable_profiling=True
sess = onnxruntime.InferenceSession(FLAGS.onnx_model, sess_options=options)
ort_res_chunk, ort_res_lens, ort_chunk_state_h, ort_chunk_state_c = sess.run(
['softmax_0.tmp_0', 'tmp_5', 'concat_0.tmp_0', 'concat_1.tmp_0'],
{"audio_chunk": audio_chunk,
"audio_chunk_lens":audio_chunk_lens,
"chunk_state_h_box": chunk_state_h_box,
"chunk_state_c_box":chunk_state_c_box})
print(sess.end_profiling())
# assert paddle equal ort
print(np.allclose(ort_res_chunk, res_chunk, atol=1e-6))
print(np.allclose(ort_res_lens, res_lens, atol=1e-6))
print(np.allclose(ort_chunk_state_h, chunk_state_h, atol=1e-6))
print(np.allclose(ort_chunk_state_c, chunk_state_c, atol=1e-6))