You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
4.0 KiB
144 lines
4.0 KiB
2 years ago
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import random
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import nn
|
||
|
|
||
|
|
||
|
## 1. RandomTimeStrech
|
||
|
class TimeStrech(nn.Layer):
|
||
|
def __init__(self, scale):
|
||
|
super().__init__()
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, x: paddle.Tensor):
|
||
|
mel_size = x.shape[-1]
|
||
|
|
||
|
x = F.interpolate(
|
||
|
x,
|
||
|
scale_factor=(1, self.scale),
|
||
|
align_corners=False,
|
||
|
mode='bilinear').squeeze()
|
||
|
|
||
|
if x.shape[-1] < mel_size:
|
||
|
noise_length = (mel_size - x.shape[-1])
|
||
|
random_pos = random.randint(0, x.shape[-1]) - noise_length
|
||
|
if random_pos < 0:
|
||
|
random_pos = 0
|
||
|
noise = x[..., random_pos:random_pos + noise_length]
|
||
|
x = paddle.concat([x, noise], axis=-1)
|
||
|
else:
|
||
|
x = x[..., :mel_size]
|
||
|
|
||
|
return x.unsqueeze(1)
|
||
|
|
||
|
|
||
|
## 2. PitchShift
|
||
|
class PitchShift(nn.Layer):
|
||
|
def __init__(self, shift):
|
||
|
super().__init__()
|
||
|
self.shift = shift
|
||
|
|
||
|
def forward(self, x: paddle.Tensor):
|
||
|
if len(x.shape) == 2:
|
||
|
x = x.unsqueeze(0)
|
||
|
x = x.squeeze()
|
||
|
mel_size = x.shape[1]
|
||
|
shift_scale = (mel_size + self.shift) / mel_size
|
||
|
x = F.interpolate(
|
||
|
x.unsqueeze(1),
|
||
|
scale_factor=(shift_scale, 1.),
|
||
|
align_corners=False,
|
||
|
mode='bilinear').squeeze(1)
|
||
|
|
||
|
x = x[:, :mel_size]
|
||
|
if x.shape[1] < mel_size:
|
||
|
pad_size = mel_size - x.shape[1]
|
||
|
x = paddle.cat(
|
||
|
[x, paddle.zeros(x.shape[0], pad_size, x.shape[2])], axis=1)
|
||
|
x = x.squeeze()
|
||
|
return x.unsqueeze(1)
|
||
|
|
||
|
|
||
|
## 3. ShiftBias
|
||
|
class ShiftBias(nn.Layer):
|
||
|
def __init__(self, bias):
|
||
|
super().__init__()
|
||
|
self.bias = bias
|
||
|
|
||
|
def forward(self, x: paddle.Tensor):
|
||
|
return x + self.bias
|
||
|
|
||
|
|
||
|
## 4. Scaling
|
||
|
class SpectScaling(nn.Layer):
|
||
|
def __init__(self, scale):
|
||
|
super().__init__()
|
||
|
self.scale = scale
|
||
|
|
||
|
def forward(self, x: paddle.Tensor):
|
||
|
return x * self.scale
|
||
|
|
||
|
|
||
|
## 5. Time Flip
|
||
|
class TimeFlip(nn.Layer):
|
||
|
def __init__(self, length):
|
||
|
super().__init__()
|
||
|
self.length = round(length)
|
||
|
|
||
|
def forward(self, x: paddle.Tensor):
|
||
|
if self.length > 1:
|
||
|
start = np.random.randint(0, x.shape[-1] - self.length)
|
||
|
x_ret = x.clone()
|
||
|
x_ret[..., start:start + self.length] = paddle.flip(
|
||
|
x[..., start:start + self.length], axis=[-1])
|
||
|
x = x_ret
|
||
|
return x
|
||
|
|
||
|
|
||
|
class PhaseShuffle2D(nn.Layer):
|
||
|
def __init__(self, n: int=2):
|
||
|
super().__init__()
|
||
|
self.n = n
|
||
|
self.random = random.Random(1)
|
||
|
|
||
|
def forward(self, x: paddle.Tensor, move=None):
|
||
|
# x.size = (B, C, M, L)
|
||
|
if move is None:
|
||
|
move = self.random.randint(-self.n, self.n)
|
||
|
|
||
|
if move == 0:
|
||
|
return x
|
||
|
else:
|
||
|
left = x[:, :, :, :move]
|
||
|
right = x[:, :, :, move:]
|
||
|
shuffled = paddle.concat([right, left], axis=3)
|
||
|
|
||
|
return shuffled
|
||
|
|
||
|
|
||
|
def build_transforms():
|
||
|
transforms = [
|
||
|
lambda M: TimeStrech(1 + (np.random.random() - 0.5) * M * 0.2),
|
||
|
lambda M: SpectScaling(1 + (np.random.random() - 1) * M * 0.1),
|
||
|
lambda M: PhaseShuffle2D(192),
|
||
|
]
|
||
|
N, M = len(transforms), np.random.random()
|
||
|
composed = nn.Sequential(
|
||
|
* [trans(M) for trans in np.random.choice(transforms, N)])
|
||
|
return composed
|