You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/canton_frontend.py

124 lines
4.5 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
from typing import List
import numpy as np
import paddle
import ToJyutping
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
INITIALS = [
'aa', 'aai', 'aak', 'aap', 'aat', 'aau', 'ai', 'au', 'ap', 'at', 'ak', 'a',
'p', 'b', 'e', 'ts', 't', 'dz', 'd', 'kw', 'k', 'gw', 'g', 'f', 'h', 'l',
'm', 'ng', 'n', 's', 'y', 'w', 'c', 'z', 'j', 'ong', 'on', 'ou', 'oi', 'ok',
'o', 'uk', 'ung'
]
INITIALS += ['sp', 'spl', 'spn', 'sil']
def jyuping_to_phonemes(cantons: List[str]):
# jyuping to inital and final
phones = []
for canton in cantons:
for consonant in INITIALS:
if canton.startswith(consonant):
if canton.startswith("nga"):
c, v = canton[:len(consonant)], canton[len(consonant):]
phones = phones + [canton[2:]]
else:
c, v = canton[:len(consonant)], canton[len(consonant):]
phones = phones + [c, v]
break
return phones
class CantonFrontend():
def __init__(self, phone_vocab_path: str):
self.text_normalizer = TextNormalizer()
self.punc = "、:,;。?!“”‘’':,;.?!"
self.vocab_phones = {}
if phone_vocab_path:
with open(phone_vocab_path, 'rt', encoding='utf-8') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
self.vocab_phones[phn] = int(id)
# if merge_sentences, merge all sentences into one phone sequence
def _g2p(self, sentences: List[str],
merge_sentences: bool=True) -> List[List[str]]:
phones_list = []
for sentence in sentences:
# jyuping
# 'gam3 ngaam1 lou5 sai3 jiu1 kau4 keoi5 dang2 zan6 jiu3 hoi1 wui2, zing6 dai1 ge2 je5 ngo5 wui5 gaau2 dim6 ga3 laa3.'
phones_str = ToJyutping.get_jyutping_text(sentence)
# phonemes
phones_split = jyuping_to_phonemes(phones_str.split(' '))
phones_list.append(phones_split)
return phones_list
def _p2id(self, phonemes: List[str]) -> np.ndarray:
# replace unk phone with sp
phonemes = [
phn if phn in self.vocab_phones else "sp" for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def get_phonemes(self,
sentence: str,
merge_sentences: bool=True,
print_info: bool=False) -> List[List[str]]:
# TN & Text Segmentation
sentences = self.text_normalizer.normalize(sentence)
# G2P
phonemes = self._g2p(sentences, merge_sentences=merge_sentences)
if print_info:
print("----------------------------")
print("text norm results:")
print(sentences)
print("----------------------------")
print("g2p results:")
print(phonemes)
print("----------------------------")
return phonemes
def get_input_ids(self,
sentence: str,
merge_sentences: bool=True,
print_info: bool=False,
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
phonemes = self.get_phonemes(
sentence, merge_sentences=merge_sentences, print_info=print_info)
result = {}
temp_phone_ids = []
for phones in phonemes:
if phones:
phone_ids = self._p2id(phones)
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
if to_tensor:
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
if temp_phone_ids:
result["phone_ids"] = temp_phone_ids
return result