|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
from typing import Dict
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import ToJyutping
|
|
|
|
|
|
|
|
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
|
|
|
|
|
|
|
|
INITIALS = [
|
|
|
|
'aa', 'aai', 'aak', 'aap', 'aat', 'aau', 'ai', 'au', 'ap', 'at', 'ak', 'a',
|
|
|
|
'p', 'b', 'e', 'ts', 't', 'dz', 'd', 'kw', 'k', 'gw', 'g', 'f', 'h', 'l',
|
|
|
|
'm', 'ng', 'n', 's', 'y', 'w', 'c', 'z', 'j', 'ong', 'on', 'ou', 'oi', 'ok',
|
|
|
|
'o', 'uk', 'ung'
|
|
|
|
]
|
|
|
|
INITIALS += ['sp', 'spl', 'spn', 'sil']
|
|
|
|
|
|
|
|
|
|
|
|
def jyuping_to_phonemes(cantons: List[str]):
|
|
|
|
# jyuping to inital and final
|
|
|
|
phones = []
|
|
|
|
for canton in cantons:
|
|
|
|
for consonant in INITIALS:
|
|
|
|
if canton.startswith(consonant):
|
|
|
|
if canton.startswith("nga"):
|
|
|
|
c, v = canton[:len(consonant)], canton[len(consonant):]
|
|
|
|
phones = phones + [canton[2:]]
|
|
|
|
else:
|
|
|
|
c, v = canton[:len(consonant)], canton[len(consonant):]
|
|
|
|
phones = phones + [c, v]
|
|
|
|
break
|
|
|
|
return phones
|
|
|
|
|
|
|
|
|
|
|
|
class CantonFrontend():
|
|
|
|
def __init__(self, phone_vocab_path: str):
|
|
|
|
self.text_normalizer = TextNormalizer()
|
|
|
|
self.punc = "、:,;。?!“”‘’':,;.?!"
|
|
|
|
|
|
|
|
self.vocab_phones = {}
|
|
|
|
if phone_vocab_path:
|
|
|
|
with open(phone_vocab_path, 'rt', encoding='utf-8') as f:
|
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
for phn, id in phn_id:
|
|
|
|
self.vocab_phones[phn] = int(id)
|
|
|
|
|
|
|
|
# if merge_sentences, merge all sentences into one phone sequence
|
|
|
|
def _g2p(self, sentences: List[str],
|
|
|
|
merge_sentences: bool=True) -> List[List[str]]:
|
|
|
|
phones_list = []
|
|
|
|
for sentence in sentences:
|
|
|
|
# jyuping
|
|
|
|
# 'gam3 ngaam1 lou5 sai3 jiu1 kau4 keoi5 dang2 zan6 jiu3 hoi1 wui2, zing6 dai1 ge2 je5 ngo5 wui5 gaau2 dim6 ga3 laa3.'
|
|
|
|
phones_str = ToJyutping.get_jyutping_text(sentence)
|
|
|
|
# phonemes
|
|
|
|
phones_split = jyuping_to_phonemes(phones_str.split(' '))
|
|
|
|
phones_list.append(phones_split)
|
|
|
|
return phones_list
|
|
|
|
|
|
|
|
def _p2id(self, phonemes: List[str]) -> np.ndarray:
|
|
|
|
# replace unk phone with sp
|
|
|
|
phonemes = [
|
|
|
|
phn if phn in self.vocab_phones else "sp" for phn in phonemes
|
|
|
|
]
|
|
|
|
phone_ids = [self.vocab_phones[item] for item in phonemes]
|
|
|
|
return np.array(phone_ids, np.int64)
|
|
|
|
|
|
|
|
def get_phonemes(self,
|
|
|
|
sentence: str,
|
|
|
|
merge_sentences: bool=True,
|
|
|
|
print_info: bool=False) -> List[List[str]]:
|
|
|
|
# TN & Text Segmentation
|
|
|
|
sentences = self.text_normalizer.normalize(sentence)
|
|
|
|
# G2P
|
|
|
|
phonemes = self._g2p(sentences, merge_sentences=merge_sentences)
|
|
|
|
|
|
|
|
if print_info:
|
|
|
|
print("----------------------------")
|
|
|
|
print("text norm results:")
|
|
|
|
print(sentences)
|
|
|
|
print("----------------------------")
|
|
|
|
print("g2p results:")
|
|
|
|
print(phonemes)
|
|
|
|
print("----------------------------")
|
|
|
|
|
|
|
|
return phonemes
|
|
|
|
|
|
|
|
def get_input_ids(self,
|
|
|
|
sentence: str,
|
|
|
|
merge_sentences: bool=True,
|
|
|
|
print_info: bool=False,
|
|
|
|
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
|
|
|
|
|
|
|
|
phonemes = self.get_phonemes(
|
|
|
|
sentence, merge_sentences=merge_sentences, print_info=print_info)
|
|
|
|
|
|
|
|
result = {}
|
|
|
|
temp_phone_ids = []
|
|
|
|
for phones in phonemes:
|
|
|
|
if phones:
|
|
|
|
phone_ids = self._p2id(phones)
|
|
|
|
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
|
|
|
|
if to_tensor:
|
|
|
|
phone_ids = paddle.to_tensor(phone_ids)
|
|
|
|
temp_phone_ids.append(phone_ids)
|
|
|
|
|
|
|
|
if temp_phone_ids:
|
|
|
|
result["phone_ids"] = temp_phone_ids
|
|
|
|
|
|
|
|
return result
|