You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.1 KiB
124 lines
4.1 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import logging
|
||
|
|
||
|
import paddle
|
||
|
from paddle import distributed as dist
|
||
|
from paddle.io import DataLoader
|
||
|
from paddle.nn import Layer
|
||
|
from paddle.optimizer import Optimizer
|
||
|
from paddle.optimizer.lr import LRScheduler
|
||
|
from sklearn.metrics import f1_score
|
||
|
|
||
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
||
|
from paddlespeech.t2s.training.reporter import report
|
||
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
||
|
logging.basicConfig(
|
||
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
||
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
||
|
logger = logging.getLogger(__name__)
|
||
|
logger.setLevel(logging.INFO)
|
||
|
|
||
|
|
||
|
class ErnieLinearUpdater(StandardUpdater):
|
||
|
def __init__(self,
|
||
|
model: Layer,
|
||
|
criterion: Layer,
|
||
|
scheduler: LRScheduler,
|
||
|
optimizer: Optimizer,
|
||
|
dataloader: DataLoader,
|
||
|
output_dir=None):
|
||
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
||
|
self.model = model
|
||
|
self.dataloader = dataloader
|
||
|
|
||
|
self.criterion = criterion
|
||
|
self.scheduler = scheduler
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||
|
self.filehandler = logging.FileHandler(str(log_file))
|
||
|
logger.addHandler(self.filehandler)
|
||
|
self.logger = logger
|
||
|
self.msg = ""
|
||
|
|
||
|
def update_core(self, batch):
|
||
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
||
|
losses_dict = {}
|
||
|
|
||
|
input, label = batch
|
||
|
label = paddle.reshape(label, shape=[-1])
|
||
|
y, logit = self.model(input)
|
||
|
pred = paddle.argmax(logit, axis=1)
|
||
|
|
||
|
loss = self.criterion(y, label)
|
||
|
|
||
|
self.optimizer.clear_grad()
|
||
|
loss.backward()
|
||
|
|
||
|
self.optimizer.step()
|
||
|
self.scheduler.step()
|
||
|
|
||
|
F1_score = f1_score(
|
||
|
label.numpy().tolist(), pred.numpy().tolist(), average="macro")
|
||
|
|
||
|
report("train/loss", float(loss))
|
||
|
losses_dict["loss"] = float(loss)
|
||
|
report("train/F1_score", float(F1_score))
|
||
|
losses_dict["F1_score"] = float(F1_score)
|
||
|
|
||
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||
|
for k, v in losses_dict.items())
|
||
|
|
||
|
|
||
|
class ErnieLinearEvaluator(StandardEvaluator):
|
||
|
def __init__(self,
|
||
|
model: Layer,
|
||
|
criterion: Layer,
|
||
|
dataloader: DataLoader,
|
||
|
output_dir=None):
|
||
|
super().__init__(model, dataloader)
|
||
|
self.model = model
|
||
|
self.criterion = criterion
|
||
|
self.dataloader = dataloader
|
||
|
|
||
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||
|
self.filehandler = logging.FileHandler(str(log_file))
|
||
|
logger.addHandler(self.filehandler)
|
||
|
self.logger = logger
|
||
|
self.msg = ""
|
||
|
|
||
|
def evaluate_core(self, batch):
|
||
|
self.msg = "Evaluate: "
|
||
|
losses_dict = {}
|
||
|
|
||
|
input, label = batch
|
||
|
label = paddle.reshape(label, shape=[-1])
|
||
|
y, logit = self.model(input)
|
||
|
pred = paddle.argmax(logit, axis=1)
|
||
|
|
||
|
loss = self.criterion(y, label)
|
||
|
|
||
|
F1_score = f1_score(
|
||
|
label.numpy().tolist(), pred.numpy().tolist(), average="macro")
|
||
|
|
||
|
report("eval/loss", float(loss))
|
||
|
losses_dict["loss"] = float(loss)
|
||
|
report("eval/F1_score", float(F1_score))
|
||
|
losses_dict["F1_score"] = float(F1_score)
|
||
|
|
||
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||
|
for k, v in losses_dict.items())
|
||
|
self.logger.info(self.msg)
|