You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/kaldi/decoder/lattice-faster-online-decod...

286 lines
10 KiB

// decoder/lattice-faster-online-decoder.cc
// Copyright 2009-2012 Microsoft Corporation Mirko Hannemann
// 2013-2014 Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// 2014 IMSL, PKU-HKUST (author: Wei Shi)
// 2018 Zhehuai Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
// see note at the top of lattice-faster-decoder.cc, about how to maintain this
// file in sync with lattice-faster-decoder.cc
#include "decoder/lattice-faster-online-decoder.h"
#include "lat/lattice-functions.h"
namespace kaldi {
template <typename FST>
bool LatticeFasterOnlineDecoderTpl<FST>::TestGetBestPath(
bool use_final_probs) const {
Lattice lat1;
{
Lattice raw_lat;
this->GetRawLattice(&raw_lat, use_final_probs);
ShortestPath(raw_lat, &lat1);
}
Lattice lat2;
GetBestPath(&lat2, use_final_probs);
BaseFloat delta = 0.1;
int32 num_paths = 1;
if (!fst::RandEquivalent(lat1, lat2, num_paths, delta, rand())) {
KALDI_WARN << "Best-path test failed";
return false;
} else {
return true;
}
}
// Outputs an FST corresponding to the single best path through the lattice.
template <typename FST>
bool LatticeFasterOnlineDecoderTpl<FST>::GetBestPath(Lattice *olat,
bool use_final_probs) const {
olat->DeleteStates();
BaseFloat final_graph_cost;
BestPathIterator iter = BestPathEnd(use_final_probs, &final_graph_cost);
if (iter.Done())
return false; // would have printed warning.
StateId state = olat->AddState();
olat->SetFinal(state, LatticeWeight(final_graph_cost, 0.0));
while (!iter.Done()) {
LatticeArc arc;
iter = TraceBackBestPath(iter, &arc);
arc.nextstate = state;
StateId new_state = olat->AddState();
olat->AddArc(new_state, arc);
state = new_state;
}
olat->SetStart(state);
return true;
}
template <typename FST>
typename LatticeFasterOnlineDecoderTpl<FST>::BestPathIterator LatticeFasterOnlineDecoderTpl<FST>::BestPathEnd(
bool use_final_probs,
BaseFloat *final_cost_out) const {
if (this->decoding_finalized_ && !use_final_probs)
KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
<< "BestPathEnd() with use_final_probs == false";
KALDI_ASSERT(this->NumFramesDecoded() > 0 &&
"You cannot call BestPathEnd if no frames were decoded.");
unordered_map<Token*, BaseFloat> final_costs_local;
const unordered_map<Token*, BaseFloat> &final_costs =
(this->decoding_finalized_ ? this->final_costs_ :final_costs_local);
if (!this->decoding_finalized_ && use_final_probs)
this->ComputeFinalCosts(&final_costs_local, NULL, NULL);
// Singly linked list of tokens on last frame (access list through "next"
// pointer).
BaseFloat best_cost = std::numeric_limits<BaseFloat>::infinity();
BaseFloat best_final_cost = 0;
Token *best_tok = NULL;
for (Token *tok = this->active_toks_.back().toks;
tok != NULL; tok = tok->next) {
BaseFloat cost = tok->tot_cost, final_cost = 0.0;
if (use_final_probs && !final_costs.empty()) {
// if we are instructed to use final-probs, and any final tokens were
// active on final frame, include the final-prob in the cost of the token.
typename unordered_map<Token*, BaseFloat>::const_iterator
iter = final_costs.find(tok);
if (iter != final_costs.end()) {
final_cost = iter->second;
cost += final_cost;
} else {
cost = std::numeric_limits<BaseFloat>::infinity();
}
}
if (cost < best_cost) {
best_cost = cost;
best_tok = tok;
best_final_cost = final_cost;
}
}
if (best_tok == NULL) { // this should not happen, and is likely a code error or
// caused by infinities in likelihoods, but I'm not making
// it a fatal error for now.
KALDI_WARN << "No final token found.";
}
if (final_cost_out)
*final_cost_out = best_final_cost;
return BestPathIterator(best_tok, this->NumFramesDecoded() - 1);
}
template <typename FST>
typename LatticeFasterOnlineDecoderTpl<FST>::BestPathIterator LatticeFasterOnlineDecoderTpl<FST>::TraceBackBestPath(
BestPathIterator iter, LatticeArc *oarc) const {
KALDI_ASSERT(!iter.Done() && oarc != NULL);
Token *tok = static_cast<Token*>(iter.tok);
int32 cur_t = iter.frame, step_t = 0;
if (tok->backpointer != NULL) {
// retrieve the correct forward link(with the best link cost)
BaseFloat best_cost = std::numeric_limits<BaseFloat>::infinity();
ForwardLinkT *link;
for (link = tok->backpointer->links;
link != NULL; link = link->next) {
if (link->next_tok == tok) { // this is a link to "tok"
BaseFloat graph_cost = link->graph_cost,
acoustic_cost = link->acoustic_cost;
BaseFloat cost = graph_cost + acoustic_cost;
if (cost < best_cost) {
oarc->ilabel = link->ilabel;
oarc->olabel = link->olabel;
if (link->ilabel != 0) {
KALDI_ASSERT(static_cast<size_t>(cur_t) < this->cost_offsets_.size());
acoustic_cost -= this->cost_offsets_[cur_t];
step_t = -1;
} else {
step_t = 0;
}
oarc->weight = LatticeWeight(graph_cost, acoustic_cost);
best_cost = cost;
}
}
}
if (link == NULL &&
best_cost == std::numeric_limits<BaseFloat>::infinity()) { // Did not find correct link.
KALDI_ERR << "Error tracing best-path back (likely "
<< "bug in token-pruning algorithm)";
}
} else {
oarc->ilabel = 0;
oarc->olabel = 0;
oarc->weight = LatticeWeight::One(); // zero costs.
}
return BestPathIterator(tok->backpointer, cur_t + step_t);
}
template <typename FST>
bool LatticeFasterOnlineDecoderTpl<FST>::GetRawLatticePruned(
Lattice *ofst,
bool use_final_probs,
BaseFloat beam) const {
typedef LatticeArc Arc;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
typedef Arc::Label Label;
// Note: you can't use the old interface (Decode()) if you want to
// get the lattice with use_final_probs = false. You'd have to do
// InitDecoding() and then AdvanceDecoding().
if (this->decoding_finalized_ && !use_final_probs)
KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
<< "GetRawLattice() with use_final_probs == false";
unordered_map<Token*, BaseFloat> final_costs_local;
const unordered_map<Token*, BaseFloat> &final_costs =
(this->decoding_finalized_ ? this->final_costs_ : final_costs_local);
if (!this->decoding_finalized_ && use_final_probs)
this->ComputeFinalCosts(&final_costs_local, NULL, NULL);
ofst->DeleteStates();
// num-frames plus one (since frames are one-based, and we have
// an extra frame for the start-state).
int32 num_frames = this->active_toks_.size() - 1;
KALDI_ASSERT(num_frames > 0);
for (int32 f = 0; f <= num_frames; f++) {
if (this->active_toks_[f].toks == NULL) {
KALDI_WARN << "No tokens active on frame " << f
<< ": not producing lattice.\n";
return false;
}
}
unordered_map<Token*, StateId> tok_map;
std::queue<std::pair<Token*, int32> > tok_queue;
// First initialize the queue and states. Put the initial state on the queue;
// this is the last token in the list active_toks_[0].toks.
for (Token *tok = this->active_toks_[0].toks;
tok != NULL; tok = tok->next) {
if (tok->next == NULL) {
tok_map[tok] = ofst->AddState();
ofst->SetStart(tok_map[tok]);
std::pair<Token*, int32> tok_pair(tok, 0); // #frame = 0
tok_queue.push(tok_pair);
}
}
// Next create states for "good" tokens
while (!tok_queue.empty()) {
std::pair<Token*, int32> cur_tok_pair = tok_queue.front();
tok_queue.pop();
Token *cur_tok = cur_tok_pair.first;
int32 cur_frame = cur_tok_pair.second;
KALDI_ASSERT(cur_frame >= 0 &&
cur_frame <= this->cost_offsets_.size());
typename unordered_map<Token*, StateId>::const_iterator iter =
tok_map.find(cur_tok);
KALDI_ASSERT(iter != tok_map.end());
StateId cur_state = iter->second;
for (ForwardLinkT *l = cur_tok->links;
l != NULL;
l = l->next) {
Token *next_tok = l->next_tok;
if (next_tok->extra_cost < beam) {
// so both the current and the next token are good; create the arc
int32 next_frame = l->ilabel == 0 ? cur_frame : cur_frame + 1;
StateId nextstate;
if (tok_map.find(next_tok) == tok_map.end()) {
nextstate = tok_map[next_tok] = ofst->AddState();
tok_queue.push(std::pair<Token*, int32>(next_tok, next_frame));
} else {
nextstate = tok_map[next_tok];
}
BaseFloat cost_offset = (l->ilabel != 0 ?
this->cost_offsets_[cur_frame] : 0);
Arc arc(l->ilabel, l->olabel,
Weight(l->graph_cost, l->acoustic_cost - cost_offset),
nextstate);
ofst->AddArc(cur_state, arc);
}
}
if (cur_frame == num_frames) {
if (use_final_probs && !final_costs.empty()) {
typename unordered_map<Token*, BaseFloat>::const_iterator iter =
final_costs.find(cur_tok);
if (iter != final_costs.end())
ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
} else {
ofst->SetFinal(cur_state, LatticeWeight::One());
}
}
}
return (ofst->NumStates() != 0);
}
// Instantiate the template for the FST types that we'll need.
template class LatticeFasterOnlineDecoderTpl<fst::Fst<fst::StdArc> >;
template class LatticeFasterOnlineDecoderTpl<fst::VectorFst<fst::StdArc> >;
template class LatticeFasterOnlineDecoderTpl<fst::ConstFst<fst::StdArc> >;
3 years ago
//template class LatticeFasterOnlineDecoderTpl<fst::ConstGrammarFst >;
//template class LatticeFasterOnlineDecoderTpl<fst::VectorGrammarFst >;
} // end namespace kaldi.