You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1017 lines
42 KiB
1017 lines
42 KiB
3 years ago
|
// decoder/lattice-faster-decoder.cc
|
||
|
|
||
|
// Copyright 2009-2012 Microsoft Corporation Mirko Hannemann
|
||
|
// 2013-2018 Johns Hopkins University (Author: Daniel Povey)
|
||
|
// 2014 Guoguo Chen
|
||
|
// 2018 Zhehuai Chen
|
||
|
|
||
|
// See ../../COPYING for clarification regarding multiple authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
|
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
|
||
|
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
|
||
|
// MERCHANTABLITY OR NON-INFRINGEMENT.
|
||
|
// See the Apache 2 License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "decoder/lattice-faster-decoder.h"
|
||
|
#include "lat/lattice-functions.h"
|
||
|
|
||
|
namespace kaldi {
|
||
|
|
||
|
// instantiate this class once for each thing you have to decode.
|
||
|
template <typename FST, typename Token>
|
||
|
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
|
||
|
const FST &fst, const LatticeFasterDecoderConfig &config)
|
||
|
: fst_(&fst),
|
||
|
delete_fst_(false),
|
||
|
config_(config),
|
||
|
num_toks_(0),
|
||
|
token_pool_(config.memory_pool_tokens_block_size),
|
||
|
forward_link_pool_(config.memory_pool_links_block_size) {
|
||
|
config.Check();
|
||
|
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
|
||
|
const LatticeFasterDecoderConfig &config, FST *fst)
|
||
|
: fst_(fst),
|
||
|
delete_fst_(true),
|
||
|
config_(config),
|
||
|
num_toks_(0),
|
||
|
token_pool_(config.memory_pool_tokens_block_size),
|
||
|
forward_link_pool_(config.memory_pool_links_block_size) {
|
||
|
config.Check();
|
||
|
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
LatticeFasterDecoderTpl<FST, Token>::~LatticeFasterDecoderTpl() {
|
||
|
DeleteElems(toks_.Clear());
|
||
|
ClearActiveTokens();
|
||
|
if (delete_fst_) delete fst_;
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::InitDecoding() {
|
||
|
// clean up from last time:
|
||
|
DeleteElems(toks_.Clear());
|
||
|
cost_offsets_.clear();
|
||
|
ClearActiveTokens();
|
||
|
warned_ = false;
|
||
|
num_toks_ = 0;
|
||
|
decoding_finalized_ = false;
|
||
|
final_costs_.clear();
|
||
|
StateId start_state = fst_->Start();
|
||
|
KALDI_ASSERT(start_state != fst::kNoStateId);
|
||
|
active_toks_.resize(1);
|
||
|
Token *start_tok =
|
||
|
new (token_pool_.Allocate()) Token(0.0, 0.0, NULL, NULL, NULL);
|
||
|
active_toks_[0].toks = start_tok;
|
||
|
toks_.Insert(start_state, start_tok);
|
||
|
num_toks_++;
|
||
|
ProcessNonemitting(config_.beam);
|
||
|
}
|
||
|
|
||
|
// Returns true if any kind of traceback is available (not necessarily from
|
||
|
// a final state). It should only very rarely return false; this indicates
|
||
|
// an unusual search error.
|
||
|
template <typename FST, typename Token>
|
||
|
bool LatticeFasterDecoderTpl<FST, Token>::Decode(DecodableInterface *decodable) {
|
||
|
InitDecoding();
|
||
|
// We use 1-based indexing for frames in this decoder (if you view it in
|
||
|
// terms of features), but note that the decodable object uses zero-based
|
||
|
// numbering, which we have to correct for when we call it.
|
||
|
AdvanceDecoding(decodable);
|
||
|
FinalizeDecoding();
|
||
|
|
||
|
// Returns true if we have any kind of traceback available (not necessarily
|
||
|
// to the end state; query ReachedFinal() for that).
|
||
|
return !active_toks_.empty() && active_toks_.back().toks != NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Outputs an FST corresponding to the single best path through the lattice.
|
||
|
template <typename FST, typename Token>
|
||
|
bool LatticeFasterDecoderTpl<FST, Token>::GetBestPath(Lattice *olat,
|
||
|
bool use_final_probs) const {
|
||
|
Lattice raw_lat;
|
||
|
GetRawLattice(&raw_lat, use_final_probs);
|
||
|
ShortestPath(raw_lat, olat);
|
||
|
return (olat->NumStates() != 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Outputs an FST corresponding to the raw, state-level lattice
|
||
|
template <typename FST, typename Token>
|
||
|
bool LatticeFasterDecoderTpl<FST, Token>::GetRawLattice(
|
||
|
Lattice *ofst,
|
||
|
bool use_final_probs) const {
|
||
|
typedef LatticeArc Arc;
|
||
|
typedef Arc::StateId StateId;
|
||
|
typedef Arc::Weight Weight;
|
||
|
typedef Arc::Label Label;
|
||
|
|
||
|
// Note: you can't use the old interface (Decode()) if you want to
|
||
|
// get the lattice with use_final_probs = false. You'd have to do
|
||
|
// InitDecoding() and then AdvanceDecoding().
|
||
|
if (decoding_finalized_ && !use_final_probs)
|
||
|
KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
|
||
|
<< "GetRawLattice() with use_final_probs == false";
|
||
|
|
||
|
unordered_map<Token*, BaseFloat> final_costs_local;
|
||
|
|
||
|
const unordered_map<Token*, BaseFloat> &final_costs =
|
||
|
(decoding_finalized_ ? final_costs_ : final_costs_local);
|
||
|
if (!decoding_finalized_ && use_final_probs)
|
||
|
ComputeFinalCosts(&final_costs_local, NULL, NULL);
|
||
|
|
||
|
ofst->DeleteStates();
|
||
|
// num-frames plus one (since frames are one-based, and we have
|
||
|
// an extra frame for the start-state).
|
||
|
int32 num_frames = active_toks_.size() - 1;
|
||
|
KALDI_ASSERT(num_frames > 0);
|
||
|
const int32 bucket_count = num_toks_/2 + 3;
|
||
|
unordered_map<Token*, StateId> tok_map(bucket_count);
|
||
|
// First create all states.
|
||
|
std::vector<Token*> token_list;
|
||
|
for (int32 f = 0; f <= num_frames; f++) {
|
||
|
if (active_toks_[f].toks == NULL) {
|
||
|
KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
|
||
|
<< ": not producing lattice.\n";
|
||
|
return false;
|
||
|
}
|
||
|
TopSortTokens(active_toks_[f].toks, &token_list);
|
||
|
for (size_t i = 0; i < token_list.size(); i++)
|
||
|
if (token_list[i] != NULL)
|
||
|
tok_map[token_list[i]] = ofst->AddState();
|
||
|
}
|
||
|
// The next statement sets the start state of the output FST. Because we
|
||
|
// topologically sorted the tokens, state zero must be the start-state.
|
||
|
ofst->SetStart(0);
|
||
|
|
||
|
KALDI_VLOG(4) << "init:" << num_toks_/2 + 3 << " buckets:"
|
||
|
<< tok_map.bucket_count() << " load:" << tok_map.load_factor()
|
||
|
<< " max:" << tok_map.max_load_factor();
|
||
|
// Now create all arcs.
|
||
|
for (int32 f = 0; f <= num_frames; f++) {
|
||
|
for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next) {
|
||
|
StateId cur_state = tok_map[tok];
|
||
|
for (ForwardLinkT *l = tok->links;
|
||
|
l != NULL;
|
||
|
l = l->next) {
|
||
|
typename unordered_map<Token*, StateId>::const_iterator
|
||
|
iter = tok_map.find(l->next_tok);
|
||
|
StateId nextstate = iter->second;
|
||
|
KALDI_ASSERT(iter != tok_map.end());
|
||
|
BaseFloat cost_offset = 0.0;
|
||
|
if (l->ilabel != 0) { // emitting..
|
||
|
KALDI_ASSERT(f >= 0 && f < cost_offsets_.size());
|
||
|
cost_offset = cost_offsets_[f];
|
||
|
}
|
||
|
Arc arc(l->ilabel, l->olabel,
|
||
|
Weight(l->graph_cost, l->acoustic_cost - cost_offset),
|
||
|
nextstate);
|
||
|
ofst->AddArc(cur_state, arc);
|
||
|
}
|
||
|
if (f == num_frames) {
|
||
|
if (use_final_probs && !final_costs.empty()) {
|
||
|
typename unordered_map<Token*, BaseFloat>::const_iterator
|
||
|
iter = final_costs.find(tok);
|
||
|
if (iter != final_costs.end())
|
||
|
ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
|
||
|
} else {
|
||
|
ofst->SetFinal(cur_state, LatticeWeight::One());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return (ofst->NumStates() > 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
// This function is now deprecated, since now we do determinization from outside
|
||
|
// the LatticeFasterDecoder class. Outputs an FST corresponding to the
|
||
|
// lattice-determinized lattice (one path per word sequence).
|
||
|
template <typename FST, typename Token>
|
||
|
bool LatticeFasterDecoderTpl<FST, Token>::GetLattice(CompactLattice *ofst,
|
||
|
bool use_final_probs) const {
|
||
|
Lattice raw_fst;
|
||
|
GetRawLattice(&raw_fst, use_final_probs);
|
||
|
Invert(&raw_fst); // make it so word labels are on the input.
|
||
|
// (in phase where we get backward-costs).
|
||
|
fst::ILabelCompare<LatticeArc> ilabel_comp;
|
||
|
ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
|
||
|
// lattice-determinization more efficient.
|
||
|
|
||
|
fst::DeterminizeLatticePrunedOptions lat_opts;
|
||
|
lat_opts.max_mem = config_.det_opts.max_mem;
|
||
|
|
||
|
DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
|
||
|
raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
|
||
|
Connect(ofst); // Remove unreachable states... there might be
|
||
|
// a small number of these, in some cases.
|
||
|
// Note: if something went wrong and the raw lattice was empty,
|
||
|
// we should still get to this point in the code without warnings or failures.
|
||
|
return (ofst->NumStates() != 0);
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::PossiblyResizeHash(size_t num_toks) {
|
||
|
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
|
||
|
* config_.hash_ratio);
|
||
|
if (new_sz > toks_.Size()) {
|
||
|
toks_.SetSize(new_sz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
A note on the definition of extra_cost.
|
||
|
|
||
|
extra_cost is used in pruning tokens, to save memory.
|
||
|
|
||
|
extra_cost can be thought of as a beta (backward) cost assuming
|
||
|
we had set the betas on currently-active tokens to all be the negative
|
||
|
of the alphas for those tokens. (So all currently active tokens would
|
||
|
be on (tied) best paths).
|
||
|
|
||
|
We can use the extra_cost to accurately prune away tokens that we know will
|
||
|
never appear in the lattice. If the extra_cost is greater than the desired
|
||
|
lattice beam, the token would provably never appear in the lattice, so we can
|
||
|
prune away the token.
|
||
|
|
||
|
(Note: we don't update all the extra_costs every time we update a frame; we
|
||
|
only do it every 'config_.prune_interval' frames).
|
||
|
*/
|
||
|
|
||
|
// FindOrAddToken either locates a token in hash of toks_,
|
||
|
// or if necessary inserts a new, empty token (i.e. with no forward links)
|
||
|
// for the current frame. [note: it's inserted if necessary into hash toks_
|
||
|
// and also into the singly linked list of tokens active on this frame
|
||
|
// (whose head is at active_toks_[frame]).
|
||
|
template <typename FST, typename Token>
|
||
|
inline typename LatticeFasterDecoderTpl<FST, Token>::Elem*
|
||
|
LatticeFasterDecoderTpl<FST, Token>::FindOrAddToken(
|
||
|
StateId state, int32 frame_plus_one, BaseFloat tot_cost,
|
||
|
Token *backpointer, bool *changed) {
|
||
|
// Returns the Token pointer. Sets "changed" (if non-NULL) to true
|
||
|
// if the token was newly created or the cost changed.
|
||
|
KALDI_ASSERT(frame_plus_one < active_toks_.size());
|
||
|
Token *&toks = active_toks_[frame_plus_one].toks;
|
||
|
Elem *e_found = toks_.Insert(state, NULL);
|
||
|
if (e_found->val == NULL) { // no such token presently.
|
||
|
const BaseFloat extra_cost = 0.0;
|
||
|
// tokens on the currently final frame have zero extra_cost
|
||
|
// as any of them could end up
|
||
|
// on the winning path.
|
||
|
Token *new_tok = new (token_pool_.Allocate())
|
||
|
Token(tot_cost, extra_cost, NULL, toks, backpointer);
|
||
|
// NULL: no forward links yet
|
||
|
toks = new_tok;
|
||
|
num_toks_++;
|
||
|
e_found->val = new_tok;
|
||
|
if (changed) *changed = true;
|
||
|
return e_found;
|
||
|
} else {
|
||
|
Token *tok = e_found->val; // There is an existing Token for this state.
|
||
|
if (tok->tot_cost > tot_cost) { // replace old token
|
||
|
tok->tot_cost = tot_cost;
|
||
|
// SetBackpointer() just does tok->backpointer = backpointer in
|
||
|
// the case where Token == BackpointerToken, else nothing.
|
||
|
tok->SetBackpointer(backpointer);
|
||
|
// we don't allocate a new token, the old stays linked in active_toks_
|
||
|
// we only replace the tot_cost
|
||
|
// in the current frame, there are no forward links (and no extra_cost)
|
||
|
// only in ProcessNonemitting we have to delete forward links
|
||
|
// in case we visit a state for the second time
|
||
|
// those forward links, that lead to this replaced token before:
|
||
|
// they remain and will hopefully be pruned later (PruneForwardLinks...)
|
||
|
if (changed) *changed = true;
|
||
|
} else {
|
||
|
if (changed) *changed = false;
|
||
|
}
|
||
|
return e_found;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// prunes outgoing links for all tokens in active_toks_[frame]
|
||
|
// it's called by PruneActiveTokens
|
||
|
// all links, that have link_extra_cost > lattice_beam are pruned
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinks(
|
||
|
int32 frame_plus_one, bool *extra_costs_changed,
|
||
|
bool *links_pruned, BaseFloat delta) {
|
||
|
// delta is the amount by which the extra_costs must change
|
||
|
// If delta is larger, we'll tend to go back less far
|
||
|
// toward the beginning of the file.
|
||
|
// extra_costs_changed is set to true if extra_cost was changed for any token
|
||
|
// links_pruned is set to true if any link in any token was pruned
|
||
|
|
||
|
*extra_costs_changed = false;
|
||
|
*links_pruned = false;
|
||
|
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
|
||
|
if (active_toks_[frame_plus_one].toks == NULL) { // empty list; should not happen.
|
||
|
if (!warned_) {
|
||
|
KALDI_WARN << "No tokens alive [doing pruning].. warning first "
|
||
|
"time only for each utterance\n";
|
||
|
warned_ = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We have to iterate until there is no more change, because the links
|
||
|
// are not guaranteed to be in topological order.
|
||
|
bool changed = true; // difference new minus old extra cost >= delta ?
|
||
|
while (changed) {
|
||
|
changed = false;
|
||
|
for (Token *tok = active_toks_[frame_plus_one].toks;
|
||
|
tok != NULL; tok = tok->next) {
|
||
|
ForwardLinkT *link, *prev_link = NULL;
|
||
|
// will recompute tok_extra_cost for tok.
|
||
|
BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
|
||
|
// tok_extra_cost is the best (min) of link_extra_cost of outgoing links
|
||
|
for (link = tok->links; link != NULL; ) {
|
||
|
// See if we need to excise this link...
|
||
|
Token *next_tok = link->next_tok;
|
||
|
BaseFloat link_extra_cost = next_tok->extra_cost +
|
||
|
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
|
||
|
- next_tok->tot_cost); // difference in brackets is >= 0
|
||
|
// link_exta_cost is the difference in score between the best paths
|
||
|
// through link source state and through link destination state
|
||
|
KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
|
||
|
if (link_extra_cost > config_.lattice_beam) { // excise link
|
||
|
ForwardLinkT *next_link = link->next;
|
||
|
if (prev_link != NULL) prev_link->next = next_link;
|
||
|
else tok->links = next_link;
|
||
|
forward_link_pool_.Free(link);
|
||
|
link = next_link; // advance link but leave prev_link the same.
|
||
|
*links_pruned = true;
|
||
|
} else { // keep the link and update the tok_extra_cost if needed.
|
||
|
if (link_extra_cost < 0.0) { // this is just a precaution.
|
||
|
if (link_extra_cost < -0.01)
|
||
|
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
|
||
|
link_extra_cost = 0.0;
|
||
|
}
|
||
|
if (link_extra_cost < tok_extra_cost)
|
||
|
tok_extra_cost = link_extra_cost;
|
||
|
prev_link = link; // move to next link
|
||
|
link = link->next;
|
||
|
}
|
||
|
} // for all outgoing links
|
||
|
if (fabs(tok_extra_cost - tok->extra_cost) > delta)
|
||
|
changed = true; // difference new minus old is bigger than delta
|
||
|
tok->extra_cost = tok_extra_cost;
|
||
|
// will be +infinity or <= lattice_beam_.
|
||
|
// infinity indicates, that no forward link survived pruning
|
||
|
} // for all Token on active_toks_[frame]
|
||
|
if (changed) *extra_costs_changed = true;
|
||
|
|
||
|
// Note: it's theoretically possible that aggressive compiler
|
||
|
// optimizations could cause an infinite loop here for small delta and
|
||
|
// high-dynamic-range scores.
|
||
|
} // while changed
|
||
|
}
|
||
|
|
||
|
// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
|
||
|
// on the final frame. If there are final tokens active, it uses
|
||
|
// the final-probs for pruning, otherwise it treats all tokens as final.
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinksFinal() {
|
||
|
KALDI_ASSERT(!active_toks_.empty());
|
||
|
int32 frame_plus_one = active_toks_.size() - 1;
|
||
|
|
||
|
if (active_toks_[frame_plus_one].toks == NULL) // empty list; should not happen.
|
||
|
KALDI_WARN << "No tokens alive at end of file";
|
||
|
|
||
|
typedef typename unordered_map<Token*, BaseFloat>::const_iterator IterType;
|
||
|
ComputeFinalCosts(&final_costs_, &final_relative_cost_, &final_best_cost_);
|
||
|
decoding_finalized_ = true;
|
||
|
// We call DeleteElems() as a nicety, not because it's really necessary;
|
||
|
// otherwise there would be a time, after calling PruneTokensForFrame() on the
|
||
|
// final frame, when toks_.GetList() or toks_.Clear() would contain pointers
|
||
|
// to nonexistent tokens.
|
||
|
DeleteElems(toks_.Clear());
|
||
|
|
||
|
// Now go through tokens on this frame, pruning forward links... may have to
|
||
|
// iterate a few times until there is no more change, because the list is not
|
||
|
// in topological order. This is a modified version of the code in
|
||
|
// PruneForwardLinks, but here we also take account of the final-probs.
|
||
|
bool changed = true;
|
||
|
BaseFloat delta = 1.0e-05;
|
||
|
while (changed) {
|
||
|
changed = false;
|
||
|
for (Token *tok = active_toks_[frame_plus_one].toks;
|
||
|
tok != NULL; tok = tok->next) {
|
||
|
ForwardLinkT *link, *prev_link = NULL;
|
||
|
// will recompute tok_extra_cost. It has a term in it that corresponds
|
||
|
// to the "final-prob", so instead of initializing tok_extra_cost to infinity
|
||
|
// below we set it to the difference between the (score+final_prob) of this token,
|
||
|
// and the best such (score+final_prob).
|
||
|
BaseFloat final_cost;
|
||
|
if (final_costs_.empty()) {
|
||
|
final_cost = 0.0;
|
||
|
} else {
|
||
|
IterType iter = final_costs_.find(tok);
|
||
|
if (iter != final_costs_.end())
|
||
|
final_cost = iter->second;
|
||
|
else
|
||
|
final_cost = std::numeric_limits<BaseFloat>::infinity();
|
||
|
}
|
||
|
BaseFloat tok_extra_cost = tok->tot_cost + final_cost - final_best_cost_;
|
||
|
// tok_extra_cost will be a "min" over either directly being final, or
|
||
|
// being indirectly final through other links, and the loop below may
|
||
|
// decrease its value:
|
||
|
for (link = tok->links; link != NULL; ) {
|
||
|
// See if we need to excise this link...
|
||
|
Token *next_tok = link->next_tok;
|
||
|
BaseFloat link_extra_cost = next_tok->extra_cost +
|
||
|
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
|
||
|
- next_tok->tot_cost);
|
||
|
if (link_extra_cost > config_.lattice_beam) { // excise link
|
||
|
ForwardLinkT *next_link = link->next;
|
||
|
if (prev_link != NULL) prev_link->next = next_link;
|
||
|
else tok->links = next_link;
|
||
|
forward_link_pool_.Free(link);
|
||
|
link = next_link; // advance link but leave prev_link the same.
|
||
|
} else { // keep the link and update the tok_extra_cost if needed.
|
||
|
if (link_extra_cost < 0.0) { // this is just a precaution.
|
||
|
if (link_extra_cost < -0.01)
|
||
|
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
|
||
|
link_extra_cost = 0.0;
|
||
|
}
|
||
|
if (link_extra_cost < tok_extra_cost)
|
||
|
tok_extra_cost = link_extra_cost;
|
||
|
prev_link = link;
|
||
|
link = link->next;
|
||
|
}
|
||
|
}
|
||
|
// prune away tokens worse than lattice_beam above best path. This step
|
||
|
// was not necessary in the non-final case because then, this case
|
||
|
// showed up as having no forward links. Here, the tok_extra_cost has
|
||
|
// an extra component relating to the final-prob.
|
||
|
if (tok_extra_cost > config_.lattice_beam)
|
||
|
tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
|
||
|
// to be pruned in PruneTokensForFrame
|
||
|
|
||
|
if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
|
||
|
changed = true;
|
||
|
tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
|
||
|
}
|
||
|
} // while changed
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
BaseFloat LatticeFasterDecoderTpl<FST, Token>::FinalRelativeCost() const {
|
||
|
if (!decoding_finalized_) {
|
||
|
BaseFloat relative_cost;
|
||
|
ComputeFinalCosts(NULL, &relative_cost, NULL);
|
||
|
return relative_cost;
|
||
|
} else {
|
||
|
// we're not allowed to call that function if FinalizeDecoding() has
|
||
|
// been called; return a cached value.
|
||
|
return final_relative_cost_;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Prune away any tokens on this frame that have no forward links.
|
||
|
// [we don't do this in PruneForwardLinks because it would give us
|
||
|
// a problem with dangling pointers].
|
||
|
// It's called by PruneActiveTokens if any forward links have been pruned
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::PruneTokensForFrame(int32 frame_plus_one) {
|
||
|
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
|
||
|
Token *&toks = active_toks_[frame_plus_one].toks;
|
||
|
if (toks == NULL)
|
||
|
KALDI_WARN << "No tokens alive [doing pruning]";
|
||
|
Token *tok, *next_tok, *prev_tok = NULL;
|
||
|
for (tok = toks; tok != NULL; tok = next_tok) {
|
||
|
next_tok = tok->next;
|
||
|
if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
|
||
|
// token is unreachable from end of graph; (no forward links survived)
|
||
|
// excise tok from list and delete tok.
|
||
|
if (prev_tok != NULL) prev_tok->next = tok->next;
|
||
|
else toks = tok->next;
|
||
|
token_pool_.Free(tok);
|
||
|
num_toks_--;
|
||
|
} else { // fetch next Token
|
||
|
prev_tok = tok;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Go backwards through still-alive tokens, pruning them, starting not from
|
||
|
// the current frame (where we want to keep all tokens) but from the frame before
|
||
|
// that. We go backwards through the frames and stop when we reach a point
|
||
|
// where the delta-costs are not changing (and the delta controls when we consider
|
||
|
// a cost to have "not changed").
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::PruneActiveTokens(BaseFloat delta) {
|
||
|
int32 cur_frame_plus_one = NumFramesDecoded();
|
||
|
int32 num_toks_begin = num_toks_;
|
||
|
// The index "f" below represents a "frame plus one", i.e. you'd have to subtract
|
||
|
// one to get the corresponding index for the decodable object.
|
||
|
for (int32 f = cur_frame_plus_one - 1; f >= 0; f--) {
|
||
|
// Reason why we need to prune forward links in this situation:
|
||
|
// (1) we have never pruned them (new TokenList)
|
||
|
// (2) we have not yet pruned the forward links to the next f,
|
||
|
// after any of those tokens have changed their extra_cost.
|
||
|
if (active_toks_[f].must_prune_forward_links) {
|
||
|
bool extra_costs_changed = false, links_pruned = false;
|
||
|
PruneForwardLinks(f, &extra_costs_changed, &links_pruned, delta);
|
||
|
if (extra_costs_changed && f > 0) // any token has changed extra_cost
|
||
|
active_toks_[f-1].must_prune_forward_links = true;
|
||
|
if (links_pruned) // any link was pruned
|
||
|
active_toks_[f].must_prune_tokens = true;
|
||
|
active_toks_[f].must_prune_forward_links = false; // job done
|
||
|
}
|
||
|
if (f+1 < cur_frame_plus_one && // except for last f (no forward links)
|
||
|
active_toks_[f+1].must_prune_tokens) {
|
||
|
PruneTokensForFrame(f+1);
|
||
|
active_toks_[f+1].must_prune_tokens = false;
|
||
|
}
|
||
|
}
|
||
|
KALDI_VLOG(4) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
|
||
|
<< " to " << num_toks_;
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::ComputeFinalCosts(
|
||
|
unordered_map<Token*, BaseFloat> *final_costs,
|
||
|
BaseFloat *final_relative_cost,
|
||
|
BaseFloat *final_best_cost) const {
|
||
|
KALDI_ASSERT(!decoding_finalized_);
|
||
|
if (final_costs != NULL)
|
||
|
final_costs->clear();
|
||
|
const Elem *final_toks = toks_.GetList();
|
||
|
BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
|
||
|
BaseFloat best_cost = infinity,
|
||
|
best_cost_with_final = infinity;
|
||
|
|
||
|
while (final_toks != NULL) {
|
||
|
StateId state = final_toks->key;
|
||
|
Token *tok = final_toks->val;
|
||
|
const Elem *next = final_toks->tail;
|
||
|
BaseFloat final_cost = fst_->Final(state).Value();
|
||
|
BaseFloat cost = tok->tot_cost,
|
||
|
cost_with_final = cost + final_cost;
|
||
|
best_cost = std::min(cost, best_cost);
|
||
|
best_cost_with_final = std::min(cost_with_final, best_cost_with_final);
|
||
|
if (final_costs != NULL && final_cost != infinity)
|
||
|
(*final_costs)[tok] = final_cost;
|
||
|
final_toks = next;
|
||
|
}
|
||
|
if (final_relative_cost != NULL) {
|
||
|
if (best_cost == infinity && best_cost_with_final == infinity) {
|
||
|
// Likely this will only happen if there are no tokens surviving.
|
||
|
// This seems the least bad way to handle it.
|
||
|
*final_relative_cost = infinity;
|
||
|
} else {
|
||
|
*final_relative_cost = best_cost_with_final - best_cost;
|
||
|
}
|
||
|
}
|
||
|
if (final_best_cost != NULL) {
|
||
|
if (best_cost_with_final != infinity) { // final-state exists.
|
||
|
*final_best_cost = best_cost_with_final;
|
||
|
} else { // no final-state exists.
|
||
|
*final_best_cost = best_cost;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::AdvanceDecoding(DecodableInterface *decodable,
|
||
|
int32 max_num_frames) {
|
||
|
if (std::is_same<FST, fst::Fst<fst::StdArc> >::value) {
|
||
|
// if the type 'FST' is the FST base-class, then see if the FST type of fst_
|
||
|
// is actually VectorFst or ConstFst. If so, call the AdvanceDecoding()
|
||
|
// function after casting *this to the more specific type.
|
||
|
if (fst_->Type() == "const") {
|
||
|
LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token> *this_cast =
|
||
|
reinterpret_cast<LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>* >(this);
|
||
|
this_cast->AdvanceDecoding(decodable, max_num_frames);
|
||
|
return;
|
||
|
} else if (fst_->Type() == "vector") {
|
||
|
LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token> *this_cast =
|
||
|
reinterpret_cast<LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>* >(this);
|
||
|
this_cast->AdvanceDecoding(decodable, max_num_frames);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
KALDI_ASSERT(!active_toks_.empty() && !decoding_finalized_ &&
|
||
|
"You must call InitDecoding() before AdvanceDecoding");
|
||
|
int32 num_frames_ready = decodable->NumFramesReady();
|
||
|
// num_frames_ready must be >= num_frames_decoded, or else
|
||
|
// the number of frames ready must have decreased (which doesn't
|
||
|
// make sense) or the decodable object changed between calls
|
||
|
// (which isn't allowed).
|
||
|
KALDI_ASSERT(num_frames_ready >= NumFramesDecoded());
|
||
|
int32 target_frames_decoded = num_frames_ready;
|
||
|
if (max_num_frames >= 0)
|
||
|
target_frames_decoded = std::min(target_frames_decoded,
|
||
|
NumFramesDecoded() + max_num_frames);
|
||
|
while (NumFramesDecoded() < target_frames_decoded) {
|
||
|
if (NumFramesDecoded() % config_.prune_interval == 0) {
|
||
|
PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
|
||
|
}
|
||
|
BaseFloat cost_cutoff = ProcessEmitting(decodable);
|
||
|
ProcessNonemitting(cost_cutoff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FinalizeDecoding() is a version of PruneActiveTokens that we call
|
||
|
// (optionally) on the final frame. Takes into account the final-prob of
|
||
|
// tokens. This function used to be called PruneActiveTokensFinal().
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::FinalizeDecoding() {
|
||
|
int32 final_frame_plus_one = NumFramesDecoded();
|
||
|
int32 num_toks_begin = num_toks_;
|
||
|
// PruneForwardLinksFinal() prunes final frame (with final-probs), and
|
||
|
// sets decoding_finalized_.
|
||
|
PruneForwardLinksFinal();
|
||
|
for (int32 f = final_frame_plus_one - 1; f >= 0; f--) {
|
||
|
bool b1, b2; // values not used.
|
||
|
BaseFloat dontcare = 0.0; // delta of zero means we must always update
|
||
|
PruneForwardLinks(f, &b1, &b2, dontcare);
|
||
|
PruneTokensForFrame(f + 1);
|
||
|
}
|
||
|
PruneTokensForFrame(0);
|
||
|
KALDI_VLOG(4) << "pruned tokens from " << num_toks_begin
|
||
|
<< " to " << num_toks_;
|
||
|
}
|
||
|
|
||
|
/// Gets the weight cutoff. Also counts the active tokens.
|
||
|
template <typename FST, typename Token>
|
||
|
BaseFloat LatticeFasterDecoderTpl<FST, Token>::GetCutoff(Elem *list_head, size_t *tok_count,
|
||
|
BaseFloat *adaptive_beam, Elem **best_elem) {
|
||
|
BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
|
||
|
// positive == high cost == bad.
|
||
|
size_t count = 0;
|
||
|
if (config_.max_active == std::numeric_limits<int32>::max() &&
|
||
|
config_.min_active == 0) {
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
|
||
|
if (w < best_weight) {
|
||
|
best_weight = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
|
||
|
return best_weight + config_.beam;
|
||
|
} else {
|
||
|
tmp_array_.clear();
|
||
|
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
|
||
|
BaseFloat w = e->val->tot_cost;
|
||
|
tmp_array_.push_back(w);
|
||
|
if (w < best_weight) {
|
||
|
best_weight = w;
|
||
|
if (best_elem) *best_elem = e;
|
||
|
}
|
||
|
}
|
||
|
if (tok_count != NULL) *tok_count = count;
|
||
|
|
||
|
BaseFloat beam_cutoff = best_weight + config_.beam,
|
||
|
min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
|
||
|
max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
|
||
|
|
||
|
KALDI_VLOG(6) << "Number of tokens active on frame " << NumFramesDecoded()
|
||
|
<< " is " << tmp_array_.size();
|
||
|
|
||
|
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + config_.max_active,
|
||
|
tmp_array_.end());
|
||
|
max_active_cutoff = tmp_array_[config_.max_active];
|
||
|
}
|
||
|
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = max_active_cutoff - best_weight + config_.beam_delta;
|
||
|
return max_active_cutoff;
|
||
|
}
|
||
|
if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
|
||
|
if (config_.min_active == 0) min_active_cutoff = best_weight;
|
||
|
else {
|
||
|
std::nth_element(tmp_array_.begin(),
|
||
|
tmp_array_.begin() + config_.min_active,
|
||
|
tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
|
||
|
tmp_array_.begin() + config_.max_active :
|
||
|
tmp_array_.end());
|
||
|
min_active_cutoff = tmp_array_[config_.min_active];
|
||
|
}
|
||
|
}
|
||
|
if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
|
||
|
if (adaptive_beam)
|
||
|
*adaptive_beam = min_active_cutoff - best_weight + config_.beam_delta;
|
||
|
return min_active_cutoff;
|
||
|
} else {
|
||
|
*adaptive_beam = config_.beam;
|
||
|
return beam_cutoff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
BaseFloat LatticeFasterDecoderTpl<FST, Token>::ProcessEmitting(
|
||
|
DecodableInterface *decodable) {
|
||
|
KALDI_ASSERT(active_toks_.size() > 0);
|
||
|
int32 frame = active_toks_.size() - 1; // frame is the frame-index
|
||
|
// (zero-based) used to get likelihoods
|
||
|
// from the decodable object.
|
||
|
active_toks_.resize(active_toks_.size() + 1);
|
||
|
|
||
|
Elem *final_toks = toks_.Clear(); // analogous to swapping prev_toks_ / cur_toks_
|
||
|
// in simple-decoder.h. Removes the Elems from
|
||
|
// being indexed in the hash in toks_.
|
||
|
Elem *best_elem = NULL;
|
||
|
BaseFloat adaptive_beam;
|
||
|
size_t tok_cnt;
|
||
|
BaseFloat cur_cutoff = GetCutoff(final_toks, &tok_cnt, &adaptive_beam, &best_elem);
|
||
|
KALDI_VLOG(6) << "Adaptive beam on frame " << NumFramesDecoded() << " is "
|
||
|
<< adaptive_beam;
|
||
|
|
||
|
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
|
||
|
|
||
|
BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
|
||
|
// pruning "online" before having seen all tokens
|
||
|
|
||
|
BaseFloat cost_offset = 0.0; // Used to keep probabilities in a good
|
||
|
// dynamic range.
|
||
|
|
||
|
|
||
|
// First process the best token to get a hopefully
|
||
|
// reasonably tight bound on the next cutoff. The only
|
||
|
// products of the next block are "next_cutoff" and "cost_offset".
|
||
|
if (best_elem) {
|
||
|
StateId state = best_elem->key;
|
||
|
Token *tok = best_elem->val;
|
||
|
cost_offset = - tok->tot_cost;
|
||
|
for (fst::ArcIterator<FST> aiter(*fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // propagate..
|
||
|
BaseFloat new_weight = arc.weight.Value() + cost_offset -
|
||
|
decodable->LogLikelihood(frame, arc.ilabel) + tok->tot_cost;
|
||
|
if (new_weight + adaptive_beam < next_cutoff)
|
||
|
next_cutoff = new_weight + adaptive_beam;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Store the offset on the acoustic likelihoods that we're applying.
|
||
|
// Could just do cost_offsets_.push_back(cost_offset), but we
|
||
|
// do it this way as it's more robust to future code changes.
|
||
|
cost_offsets_.resize(frame + 1, 0.0);
|
||
|
cost_offsets_[frame] = cost_offset;
|
||
|
|
||
|
// the tokens are now owned here, in final_toks, and the hash is empty.
|
||
|
// 'owned' is a complex thing here; the point is we need to call DeleteElem
|
||
|
// on each elem 'e' to let toks_ know we're done with them.
|
||
|
for (Elem *e = final_toks, *e_tail; e != NULL; e = e_tail) {
|
||
|
// loop this way because we delete "e" as we go.
|
||
|
StateId state = e->key;
|
||
|
Token *tok = e->val;
|
||
|
if (tok->tot_cost <= cur_cutoff) {
|
||
|
for (fst::ArcIterator<FST> aiter(*fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc = aiter.Value();
|
||
|
if (arc.ilabel != 0) { // propagate..
|
||
|
BaseFloat ac_cost = cost_offset -
|
||
|
decodable->LogLikelihood(frame, arc.ilabel),
|
||
|
graph_cost = arc.weight.Value(),
|
||
|
cur_cost = tok->tot_cost,
|
||
|
tot_cost = cur_cost + ac_cost + graph_cost;
|
||
|
if (tot_cost >= next_cutoff) continue;
|
||
|
else if (tot_cost + adaptive_beam < next_cutoff)
|
||
|
next_cutoff = tot_cost + adaptive_beam; // prune by best current token
|
||
|
// Note: the frame indexes into active_toks_ are one-based,
|
||
|
// hence the + 1.
|
||
|
Elem *e_next = FindOrAddToken(arc.nextstate,
|
||
|
frame + 1, tot_cost, tok, NULL);
|
||
|
// NULL: no change indicator needed
|
||
|
|
||
|
// Add ForwardLink from tok to next_tok (put on head of list tok->links)
|
||
|
tok->links = new (forward_link_pool_.Allocate())
|
||
|
ForwardLinkT(e_next->val, arc.ilabel, arc.olabel, graph_cost,
|
||
|
ac_cost, tok->links);
|
||
|
}
|
||
|
} // for all arcs
|
||
|
}
|
||
|
e_tail = e->tail;
|
||
|
toks_.Delete(e); // delete Elem
|
||
|
}
|
||
|
return next_cutoff;
|
||
|
}
|
||
|
|
||
|
// static inline
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::DeleteForwardLinks(Token *tok) {
|
||
|
ForwardLinkT *l = tok->links, *m;
|
||
|
while (l != NULL) {
|
||
|
m = l->next;
|
||
|
forward_link_pool_.Free(l);
|
||
|
l = m;
|
||
|
}
|
||
|
tok->links = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::ProcessNonemitting(BaseFloat cutoff) {
|
||
|
KALDI_ASSERT(!active_toks_.empty());
|
||
|
int32 frame = static_cast<int32>(active_toks_.size()) - 2;
|
||
|
// Note: "frame" is the time-index we just processed, or -1 if
|
||
|
// we are processing the nonemitting transitions before the
|
||
|
// first frame (called from InitDecoding()).
|
||
|
|
||
|
// Processes nonemitting arcs for one frame. Propagates within toks_.
|
||
|
// Note-- this queue structure is not very optimal as
|
||
|
// it may cause us to process states unnecessarily (e.g. more than once),
|
||
|
// but in the baseline code, turning this vector into a set to fix this
|
||
|
// problem did not improve overall speed.
|
||
|
|
||
|
KALDI_ASSERT(queue_.empty());
|
||
|
|
||
|
if (toks_.GetList() == NULL) {
|
||
|
if (!warned_) {
|
||
|
KALDI_WARN << "Error, no surviving tokens: frame is " << frame;
|
||
|
warned_ = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
|
||
|
StateId state = e->key;
|
||
|
if (fst_->NumInputEpsilons(state) != 0)
|
||
|
queue_.push_back(e);
|
||
|
}
|
||
|
|
||
|
while (!queue_.empty()) {
|
||
|
const Elem *e = queue_.back();
|
||
|
queue_.pop_back();
|
||
|
|
||
|
StateId state = e->key;
|
||
|
Token *tok = e->val; // would segfault if e is a NULL pointer but this can't happen.
|
||
|
BaseFloat cur_cost = tok->tot_cost;
|
||
|
if (cur_cost >= cutoff) // Don't bother processing successors.
|
||
|
continue;
|
||
|
// If "tok" has any existing forward links, delete them,
|
||
|
// because we're about to regenerate them. This is a kind
|
||
|
// of non-optimality (remember, this is the simple decoder),
|
||
|
// but since most states are emitting it's not a huge issue.
|
||
|
DeleteForwardLinks(tok); // necessary when re-visiting
|
||
|
tok->links = NULL;
|
||
|
for (fst::ArcIterator<FST> aiter(*fst_, state);
|
||
|
!aiter.Done();
|
||
|
aiter.Next()) {
|
||
|
const Arc &arc = aiter.Value();
|
||
|
if (arc.ilabel == 0) { // propagate nonemitting only...
|
||
|
BaseFloat graph_cost = arc.weight.Value(),
|
||
|
tot_cost = cur_cost + graph_cost;
|
||
|
if (tot_cost < cutoff) {
|
||
|
bool changed;
|
||
|
|
||
|
Elem *e_new = FindOrAddToken(arc.nextstate, frame + 1, tot_cost,
|
||
|
tok, &changed);
|
||
|
|
||
|
tok->links = new (forward_link_pool_.Allocate()) ForwardLinkT(
|
||
|
e_new->val, 0, arc.olabel, graph_cost, 0, tok->links);
|
||
|
|
||
|
// "changed" tells us whether the new token has a different
|
||
|
// cost from before, or is new [if so, add into queue].
|
||
|
if (changed && fst_->NumInputEpsilons(arc.nextstate) != 0)
|
||
|
queue_.push_back(e_new);
|
||
|
}
|
||
|
}
|
||
|
} // for all arcs
|
||
|
} // while queue not empty
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::DeleteElems(Elem *list) {
|
||
|
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
|
||
|
e_tail = e->tail;
|
||
|
toks_.Delete(e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::ClearActiveTokens() { // a cleanup routine, at utt end/begin
|
||
|
for (size_t i = 0; i < active_toks_.size(); i++) {
|
||
|
// Delete all tokens alive on this frame, and any forward
|
||
|
// links they may have.
|
||
|
for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
|
||
|
DeleteForwardLinks(tok);
|
||
|
Token *next_tok = tok->next;
|
||
|
token_pool_.Free(tok);
|
||
|
num_toks_--;
|
||
|
tok = next_tok;
|
||
|
}
|
||
|
}
|
||
|
active_toks_.clear();
|
||
|
KALDI_ASSERT(num_toks_ == 0);
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
template <typename FST, typename Token>
|
||
|
void LatticeFasterDecoderTpl<FST, Token>::TopSortTokens(
|
||
|
Token *tok_list, std::vector<Token*> *topsorted_list) {
|
||
|
unordered_map<Token*, int32> token2pos;
|
||
|
typedef typename unordered_map<Token*, int32>::iterator IterType;
|
||
|
int32 num_toks = 0;
|
||
|
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
|
||
|
num_toks++;
|
||
|
int32 cur_pos = 0;
|
||
|
// We assign the tokens numbers num_toks - 1, ... , 2, 1, 0.
|
||
|
// This is likely to be in closer to topological order than
|
||
|
// if we had given them ascending order, because of the way
|
||
|
// new tokens are put at the front of the list.
|
||
|
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
|
||
|
token2pos[tok] = num_toks - ++cur_pos;
|
||
|
|
||
|
unordered_set<Token*> reprocess;
|
||
|
|
||
|
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) {
|
||
|
Token *tok = iter->first;
|
||
|
int32 pos = iter->second;
|
||
|
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
|
||
|
if (link->ilabel == 0) {
|
||
|
// We only need to consider epsilon links, since non-epsilon links
|
||
|
// transition between frames and this function only needs to sort a list
|
||
|
// of tokens from a single frame.
|
||
|
IterType following_iter = token2pos.find(link->next_tok);
|
||
|
if (following_iter != token2pos.end()) { // another token on this frame,
|
||
|
// so must consider it.
|
||
|
int32 next_pos = following_iter->second;
|
||
|
if (next_pos < pos) { // reassign the position of the next Token.
|
||
|
following_iter->second = cur_pos++;
|
||
|
reprocess.insert(link->next_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// In case we had previously assigned this token to be reprocessed, we can
|
||
|
// erase it from that set because it's "happy now" (we just processed it).
|
||
|
reprocess.erase(tok);
|
||
|
}
|
||
|
|
||
|
size_t max_loop = 1000000, loop_count; // max_loop is to detect epsilon cycles.
|
||
|
for (loop_count = 0;
|
||
|
!reprocess.empty() && loop_count < max_loop; ++loop_count) {
|
||
|
std::vector<Token*> reprocess_vec;
|
||
|
for (typename unordered_set<Token*>::iterator iter = reprocess.begin();
|
||
|
iter != reprocess.end(); ++iter)
|
||
|
reprocess_vec.push_back(*iter);
|
||
|
reprocess.clear();
|
||
|
for (typename std::vector<Token*>::iterator iter = reprocess_vec.begin();
|
||
|
iter != reprocess_vec.end(); ++iter) {
|
||
|
Token *tok = *iter;
|
||
|
int32 pos = token2pos[tok];
|
||
|
// Repeat the processing we did above (for comments, see above).
|
||
|
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
|
||
|
if (link->ilabel == 0) {
|
||
|
IterType following_iter = token2pos.find(link->next_tok);
|
||
|
if (following_iter != token2pos.end()) {
|
||
|
int32 next_pos = following_iter->second;
|
||
|
if (next_pos < pos) {
|
||
|
following_iter->second = cur_pos++;
|
||
|
reprocess.insert(link->next_tok);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
KALDI_ASSERT(loop_count < max_loop && "Epsilon loops exist in your decoding "
|
||
|
"graph (this is not allowed!)");
|
||
|
|
||
|
topsorted_list->clear();
|
||
|
topsorted_list->resize(cur_pos, NULL); // create a list with NULLs in between.
|
||
|
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter)
|
||
|
(*topsorted_list)[iter->second] = iter->first;
|
||
|
}
|
||
|
|
||
|
// Instantiate the template for the combination of token types and FST types
|
||
|
// that we'll need.
|
||
|
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::StdToken>;
|
||
|
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::StdToken >;
|
||
|
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::StdToken >;
|
||
|
|
||
|
|
||
|
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc> , decoder::BackpointerToken>;
|
||
|
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::BackpointerToken >;
|
||
|
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::BackpointerToken >;
|
||
|
|
||
|
|
||
|
} // end namespace kaldi.
|